Have a personal or library account? Click to login
Contradiction Immunity and Guess-Then-Determine Attacks on Gost Cover

Contradiction Immunity and Guess-Then-Determine Attacks on Gost

Open Access
|Feb 2013

References

  1. [1] BIRYUKOV, A.-WAGNER, D.: Advanced Slide Attacks, in: Advances in Cryptology- -EUROCRYPT ’00, 19th Internat. Conf. on the Theory and Appl. of Cryptographic Tech., Bruges, Belgium, 2000 (B. Preneel, ed.), Lecture Notes in Comput. Sci., Vol. 1807, Springer, Berlin, 2000, pp. 598-606.
  2. [2] BARD, G. V.-COURTOIS, N. T.-JEFFERSON, CH.: Efficient methods for conversion and solution of sparse systems of low-degree multivariate polynomials over GF(2) via SAT-solvers, http://eprint.iacr.org/2007/024/. A working windows distribution with source code is available at: http://www.nicolascourtois.com/software/CourtoisBardJefferson_public_distribution.zip
  3. [3] COURTOIS, N.-BARD, G. V.: Algebraic cryptanalysis of the data encryption standard, in: Cryptography and Coding, 11th IMA Internat. Conf. (S. Galbraith, ed.), Cirencester, UK, 2007, Lecture Notes in Comput. Sci., Vol. 4887, Springer, Berlin, 2007, pp. 152-169; eprint.iacr.org/2006/402/.10.1007/978-3-540-77272-9_10
  4. [4] COURTOIS, N.-BARD, G. V.-WAGNER, D.: Algebraic and slide attacks on KeeLoq, in: Fast Software Encryption, 15th Internat. Workshop-FSE ’08 (K. Nyberg, ed.), Lausanne, Switzerland, 2008, Lecture Notes in Comput. Sci., Vol. 5086, Springer, Berlin, 2008, pp. 97-115.
  5. [5] COURTOIS, N.-BARD, G. V.-BOGDANOV, A.: Periodic ciphers with small blocks and aryptanalysis of KeeLoq, Tatra Mt. Math. Publ. 41 (2008), 167-188.
  6. [6] COURTOIS, N.-DEBRAIZE, B.: Algebraic description and simultaneous linear approximations of addition in Snow 2.0., in: 10th Internat. Conf. on Information and Commun. Security-ICICS ’08 (L. Chen et al., eds.), Birmingham, UK, 2008, Lecture Notes in Comput. Sci., Vol. 5308, Springer, Berlin, 2008, pp. 328-344.
  7. [7] COURTOIS, N. T.-SEPHERDAD, P.-SUSIL, P.-VAUDENAY, S.: ElimLin algorithm revisited, in: Fast Software Encryption-FSE ’12, 19th Internat. Workshop (A. Can-teaut, ed.), Washington, 2012, Lecture Notes in Comput. Sci., Vol. 7549, Springer, Berlin, pp. 306-325.
  8. [8] COURTOIS, N.: Security evaluation of GOST 28147-89 in view of international standardisation, Cryptologia 36 (2012) 2-13.
  9. [9] COURTOIS, N.: Low complexity key recovery attacks on GOST block cipher, Cryptologia 37 (2013) (to apear).10.1080/01611194.2012.739587
  10. [10] COURTOIS, N.: Algebraic complexity reduction and cryptanalysis of GOST, Preprint, 9 December 2012, http://eprint.iacr.org/2011/626.
  11. [11] COURTOIS, N.-MISZTAL, M.: Aggregated differentials and cryptanalysis of PP-1 and GOST, in: 11th Central European. Conference on Cryptology-CECC ’11, Debrecen, Hungary, 2012, Period. Math. Hungar. 65 (2012), 11-26.10.1007/s10998-012-2983-8
  12. [12] COURTOIS, N.-MISZTAL, M.: First differential attack on full 32-round GOST, in: 13th Internat. Conf.-ICICS ’11 (S. Qing et al., eds.), Beijing, China, 2011, Lecture Notes in Comput. Sci., Vol. 7043, pp. 216-227.10.1007/978-3-642-25243-3_18
  13. [13] COURTOIS, N.-MISZTAL, M.: Differential cryptanalysis of GOST, Cryptology ePrint Archive, Report 2011/312, 14 June 2011, http://eprint.iacr.org/2011/312.
  14. [14] COURTOIS, N.: An improved differential attack on full GOST, in: Cryptology ePrint Archive, Report 2012/138, 15 March 2012, http://eprint.iacr.org/2012/138.
  15. [15] COURTOIS, N. T.-HULME, D.-MOUROUZIS, TH.: Solving circuit optimisation problems in cryptography and cryptanalysis, in: (informal) proceedings of SHARCS ’12, Workshop, Washington, USA, pp. 179-191, http://2012.sharcs.org/record.pdf. Earlier preprint is available at, http://eprint.iacr.org/2011/475, and an abridged version appears in the electronic proceedings of the 2nd IMA conference Mathematics in Defence 2011, UK.
  16. [16] DINUR, I.-DUNKELMAN, O.-SHAMIR, A.: Improved attacks on full GOST, in: Fast Software Encryption-FSE ’12, 19th Internat. Workshop, Washington, USA, 2012, Lecture Notes in Comput. Sci., Vol. 7549, Springer, Berlin, 2012, pp. 9-28; early version available at http://eprint.iacr.org/2011/558/.10.1007/978-3-642-34047-5_2
  17. [17] FAUGÉRE, J.-CH.: A new efficient algorithm for computing Gr¨obner bases withoutreduction to zero (F5), in: Proc. of the Internat. Symp. on Symbolic and Algebraic Computation-ISSAC ’02, New York, NY, 2002, ACM Press, New York, pp. 75-83.10.1145/780506.780516
  18. [18] SHORIN, V. V.-JELEZNIAKOV, V. V.-GABIDULIN, E. M.: Linear and differential cryptanalysis of Russian GOST, Preprint submitted to Elsevier Preprint, 4 April 2001.10.1016/S1571-0653(04)00206-9
  19. [19] ZABOTIN, I. A.-GLAZKOV, G. P.-ISAEVA, V. B.: Cryptographic protection for information processing systems, Government Standard of the USSR, GOST 28147-89, Government Committee of the USSR for Standards, 1989. ed States DES can be used ONLY for unclassified documents.
  20. [20] A Russian reference implementation of GOST implementing Russian algorithms as an extension of TLS v1.0. is available as a part of OpenSSL library. The file gost89.c contains eight different sets of S-boxes and is found in OpenSSL 0.9.8 and later at http://www.openssl.org/source/
  21. [21] ISOBE, T.: A single-key attack on the full GOST block cipher, in: Fast Software Encryption-FSE ’11, 18th Internat. Workshop (A. Joux, ed.), Lyngby, Denmark, 2011, Lecture Notes in Comput. Sci., Vol. 6733, Springer, Berlin, 2011, pp. 290-305.
  22. [22] KARA, O.: Reflection cryptanalysis of some ciphers, in: Progress in Cryptology- -INDOCRYPT ’08, 9th Internat. Conf. on Cryptology in India (R. Chowdhury et al., eds.), Kharagpur, India, 2008, Lecture Notes in Comput. Sci., Vol. 5365, Springer, Berlin, 2008, pp. 294-307.
  23. [23] POSCHMANN, A.-LING, S.-WANG, H.: 256 bit standardized crypto for 650 GE GOST revisited, in: Workshop on Cryptographic Hardware and Embedded Systems- CHES ’10 Santa Barbara, California, 2010, Lecture Notes in Comput. Sci., Vol. 6225, Springer, Berlin, 2010, pp. 219-233.
  24. [24] CHARNES, C.-O’CONNOR, L.-PIEPRZYK, J.-SAVAFI-NAINI, R.-ZHENG, Y.: Comments on Soviet encryption algorithm, in: Advances in Cryptology- -EUROCRYPT ’94 (A. De Santis, ed.), Lecture Notes in Comput. Sci., Vol. 950, Springer, Berlin, 1995, pp. 433-438.10.1007/BFb0053459
  25. [25] SEMAEV, I.: Sparse algebraic equations over finite fields, SIAM J. Comput. 39 (2009), 388-409.10.1137/070700371
  26. [26] SÖRENSSON, N.-EEN, N.-SOOS, M.: CryptoMiniSat 2.92, an open-source SAT solver package based on earlier MiniSat software, http://www.msoos.org/cryptominisat2/.
  27. [27] SCHNEIER, B.: Section 14.1 GOST (2nd ed.), in: Applied Cryptography, John Wiley and Sons, New York, 1996.
DOI: https://doi.org/10.2478/v10127-012-0039-3 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 65 - 79
Published on: Feb 1, 2013
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2013 Nicolas T. Courtois, Jerzy A. Gawinecki, Guangyan Song, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons License.