Have a personal or library account? Click to login
A Comparison of Local Reduction and Sat-Solver Based Algebraic Cryptanalysis of Jh And Keccak Cover

A Comparison of Local Reduction and Sat-Solver Based Algebraic Cryptanalysis of Jh And Keccak

Open Access
|Feb 2013

References

  1. [1] ADAMČEK, P.: Cryptanalysis of Keccak. Master’s Thesis. Slovak University of Technology in Bratislava, 2012. (In Slovak)
  2. [2] BARD, G. V.: Algebraic Cryptanalysis, Springer, Dordrecht, 2009.10.1007/978-0-387-88757-9
  3. [3] BERTONI, G. - DAEMEN, J.- PEETERS, M.- VAN ASSCHE, G.: The Keccak reference, Tech. Report, 2011, http://keccak.noekeon.org/Keccak-reference-3.0.pdf.
  4. [4] BIERE, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010, Tech. Report, Institute for Formal Models and Verication, Johannes Kepler University, Linz, Austria, 2010.
  5. [5] COURTOIS, N. T. - BARD, G. V.: Algebraic cryptanalysis of the data encryption standard, in: Cryptography and Coding (S. Galbraith, ed.), Lecture Notes in Comput. Sci. Vol. 4887, Springer Berlin, 2007, pp. 152-169, http://dx.doi.org/10.1007/978-3-540-77272-9_10.10.1007/978-3-540-77272-9_10
  6. [6] COURTOIS, N. T.: Algebraic complexity reduction and cryptanalysis of GOST, Cryptol-ogy ePrint Archive, Report 2011/626, http://eprint.iacr.org/.
  7. [7] COURTOIS, N. T. - BARD, G. V. - WAGNER, D.: Algebraic and slide attacks onKeeLoq, Cryptology ePrint Archive, Report 2007/062, http://eprint.iacr.org/.
  8. [8] DAVIS, M. - LOGEMANN, G. - LOVELAND, D.: A machine program for theorem-proving, Commun. ACM 5 (1962), 394-397, http://doi.acm.org/10.1145/368273.368557.
  9. [9] GEISELMANN, W. - MATHEIS, K. - STEINWANDT, R.: PET SNAKE: A special purpose architecture to implement an algebraic attack in hardware, Cryptology ePrint Archive, Report 2009/222, http://eprint.iacr.org/.10.1007/978-3-642-17499-5_12
  10. [10] IMPAGLIAZZO, R. - PATURI, R.: The Complexity of k-SAT, in: Computational Complexity, Annual IEEE Conference 1999, IEEE Computer Society, Los Alamitos, CA, USA, pp. 237-240.
  11. [11] LODERER, M.: Cryptanalysis of JH function. Master’s Thesis, Slovak University of Technology in Bratislava, 2012. (In Slovak)
  12. [12] MORAWIECKI, P.- SREBRNY, M.: A SAT-based preimage analysis of reduced KECCAK hash functions, Cryptology ePrint Archive, Report 2010/285, 2010, http://eprint.iacr.org/.
  13. [13] RADDUM, H.: Cryptanalytic results on TRIVIUM. Tech. Report 2006/039, eSTREAM, ECRYPT Stream Cipher Project, 2006.
  14. [14] RADDUM, H.- SEMAEV, I.: New technique for solving sparse equation systems, Cryp-tology ePrint Archive, Report 475/2006, http://eprint.iacr.org/2006/475.
  15. [15] SCHILLING, T. - RADDUM, H.: Solving equation systems by agreeing and learning, in: Arithmetic of Finite Fields (M. Hasan, T. Helleseth, eds.), Lecture Notes in Comput. Sci. Vol. 6087, Springer, Berlin, 2010, pp. 151-165. http://dx.doi.org/10.1007/978-3-642-13797-6_11.10.1007/978-3-642-13797-6_11
  16. [16] SCHILLING, T. - ZAJAC, P.: Phase transition in a system of random sparse Booleanequations , Tatra Mt. Math. Publ. 45 (2010), 93-105.
  17. [17] SEMAEV, I.: On solving sparse algebraic equations over finite fields, Des. Codes Cryptography 49 (2008), 47-60.10.1007/s10623-008-9182-x
  18. [18] SEMAEV, I.: Sparse algebraic equations over finite fields, SIAM J. Comput. 39 (2009), 388-409.10.1137/070700371
  19. [19] SEMAEV, I.: Improved agreeing-gluing algorithm, Cryptology ePrint Archive, Report 140/2010, http://eprint.iacr.org/2010/140.
  20. [20] SOOS, M.: CryptoMiniSat2, 2012, http://www.msoos.org/cryptominisat2/.
  21. [21] VALKY, G.- LEHOCKI, F.: Modern approach in multiple patients ECG monitoring, in: BHI, IEEE, 2012, pp. 131-134.
  22. [22] WU, H.: The hash function JH, Submission to NIST (round 3), (2011), http://www3.ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf.
  23. [23] ZAJAC, P.: Local reduction in evaluation of cipher security, 2012 (preprint).
  24. [24] ZAJAC, P.: Solving trivium-based Boolean equations using the method of syllogisms, Fund. Inform. 114 (2012), 359-373.
  25. [25] ZAJAC, P.: On the use of the method of syllogisms in algebraic cryptanalysis, in: Proceedings of the 1st Plenary Conference of the NIL-I-004, University of Bergen, 2009, pp. 21-30.
  26. [26] ZAJAC, P.: Implementation of the method of syllogisms, 2010 (preprint).
  27. [27] ZAJAC, P. - ČAGALA, R.: Local reduction and the algebraic cryptanalysis of the blockcipher GOST, Period. Math. Hungar. 65 (2012), 239-255.10.1007/s10998-012-6376-9
  28. [28] ZAKREVSKIJ, A. - VASILKOVA, I.: Reducing large systems of Boolean equations, in: 4th International Workshop on Boolean Problems, Freiberg University, 2000, pp. 21-22.
DOI: https://doi.org/10.2478/v10127-012-0036-6 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 1 - 20
Published on: Feb 1, 2013
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2013 Peter Adamček, Marek Loderer, Pavol Zajac, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons License.