References
- [1] BORS´IK, J.: Maxima and minima of simply continuous and quasicontinuous functions, Math. Slovaca 46 (1996), 261-268.
- [2] FARKOV´A, J.: About the naximum and the minimum of Darboux functions, Mat. ˇCas. 21 (1971), 110-116.
- [3] GRANDE, Z.-NATKANIEC, T.: Lattices generated by T -quasi-continuous functions, Bull. Polish Acad. Sci. Math. 34 (1986), 525-530.
- [4] GRANDE, Z.-SOŁTYSIK, L.: Some remarks on quasi-continuous real functions, Problemy Mat. 10 (1988), 79-87.
- [5] KEMPISTY, S.: Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184-197.10.4064/fm-19-1-184-197
- [6] MALISZEWSKI, A.: On the limits of strong ´Swi¸atkowski function, Zeszyty Nauk. Politech. Ł´odz., Mat. 27 (1995), 87-93.
- [7] MALISZEWSKI, A.: Maximums of Darboux quasi-continuous functions, Math. Slovaca 49 (1999), 381-386.
- [8] MARCINIAK,M.-SZCZUKA,P.: On internally strong ´Swi¸atkowski functions (preprint).
- [9] NATKANIEC, T.: On the maximum and the minimum of quasi-continuous functions, Math. Slovaca 42 (1992), 103-110.
- [10] NATKANIEC, T.: On quasi-continuous functions having Darboux property, Math. Pannon. 3 (1992), 81-96.
- [11] SZCZUKA, P.: Maximums of strong ´Swi¸atkowski functions, Math. Slovaca 52 (2002), 541-548.
- [12] SZCZUKA, P.: Maximal classes for the family of strong ´Swi¸atkowski functions, RealAnal. Exchange 28 (2002/03), 429-437.10.14321/realanalexch.28.2.0429