References
- [1] ESTOUP, J. B.: Les Gammes St´enographiques. Gauthier-Villars, Institute St´enographique, Paris, 1916.
- [2] GASPER, G.-RAHMAN, R.: Basic Hypergeometric Series. Cambridge University Press, Cambridge, 1990.
- [3] GIPPS, P. G.: A queueing model for traffic flow, J. Roy. Statist. Soc. 39 (1977), 276-282.
- [4] JOHNSON, N.L.-KEMP, A.W.-KOTZ, S.: Univariate Discrete Distributions (3rd ed.), Wiley, Hoboken, NJ, 2005.10.1002/0471715816
- [5] KEMP, C. D.-KEMP, A. W.: Some distributions arising from an inventory decision problem, Bull. Int. Statist. Inst. 43 (1969), 367-369.
- [6] KRISHNAJI, N.: A characteristic property of the Yule distribution, Sankhy¯a Ser. A 32 (1970), 343-346.
- [7] LI, S.: On a class of discrete time renewal risk models, Scand. Actuar. J. 4 (2005), 241-260.10.1080/03461230510009745
- [8] LI, S.-LU, Y.-GARRIDO, J.: A review of discrete-time risk models, Rev. R. Acad. Cienc. Exactas Fs. Nat., Ser. A Mat. 103 (2009), 321-337.
- [9] LIN, X. S.-WILLMOT, G. E.: Analysis of a defective renewal equation arising in ruin theory, Insurance Math. Econom. 25 (1999), 63-84.10.1016/S0167-6687(99)00026-8
- [10] MAˇCUTEK, J.: On two types of partial summations, Tatra Mt. Math. Publ. 26 (2002), 403-410.
- [11] MAˇCUTEK, J.: Discrete distributions connected by partial summations, Glottometrics 11 (2005), 45-52.
- [12] MAˇCUTEK, J.: A limit property of the geometric distribution, Theory Probab. Appl. 50 (2006), 316-319.10.1137/S0040585X97981767
- [13] MILLER, A. J.: A queueing model for road traffic flow, J. Roy. Statist. Soc. Ser. B 23 (1961), 64-75.
- [14] NAIR, N. U.-HITHA, N.: Characterization of discrete models by distribution based on their partial sums, Statist. Probab. Lett. 8 (1989), 335-337.10.1016/0167-7152(89)90041-2
- [15] NARANAN, S.-BALASUBRAHMANYAN, V. K.: Power Laws in Statistical Linguistics and Related Systems. Quantitative Linguistics. An International Handbook (K¨ohler, R., Altmann, G., Piotrowski, R. G., eds.), de Gruyter, Berlin, 2005, pp. 716-738.
- [16] WILLMOT, G.: Mixed compound Poisson distributions, ASTIN Bull. 16 (1986), 59-79.10.2143/AST.16.3.2014993
- [17] WIMMER, G.-ALTMANN, G.: Thesaurus of Univariate Discrete Probability Distribu- tions. Stamm, Essen, 1999.
- [18] WIMMER, G.-ALTMANN, G.: On the generalization of the STER distribution applied to generalized hypergeometric parents, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 39 (2000), 215-247.
- [19] WIMMER, G.-ALTMANN, G.: A new type of partial-sums distributions, Statist. Probab. Lett. 52 (2001), 359-364.10.1016/S0167-7152(00)00212-1
- [20] WIMMER, G.-ALTMANN, G.: Models of rank-frequency distributions in language and music, in: Text as a Linguistic Paradigm: Levels, Constituents, Constructs (Uhl´ıˇrov´a, L., Wimmer, G., Altmann, G., K¨ohler, R., eds.), WVT, Trier, 2001, pp. 283-294.
- [21] WIMMER, G.-ALTMANN, G.: Unified derivation of some linguistic laws, in: Quantitative Linguistics. An International Handbook (K¨ohler, R., Altmann, G., Piotrowski, R. G., eds.), de Gruyter, Berlin, 2005, pp. 791-807.
- [22] WIMMER, G.-KALAS, J.: A characterization of the geometric distribution, Tatra Mt. Math. Publ. 17 (1999), 325-329.
- [23] Z¨ORNIG, P.-ALTMANN, G.: Unified representation of Zipf distributions, Comput. Statist. Data Anal. 19 (1995), 461-473.10.1016/0167-9473(94)00009-8