Have a personal or library account? Click to login
Criterion-robust designs for the models of spring balance weighing Cover

Criterion-robust designs for the models of spring balance weighing

Open Access
|Nov 2012

References

  1. [1] CERANKA, B.-KATULSKA, K.: Construction of optimum biased spring balance weighing designs with the diagonal covariance matrix of errors, Comput. Stat. Data Anal. 10 (1990), 121-131.10.1016/0167-9473(90)90057-O
  2. [2] CHENG, C. S.: An application of the Kiefer-Wolfowitz equivalence theorem to a problem in Hadamard transform optics, Ann. Stat. 15 (1987), 1593-1603.
  3. [3] CHENG, C. S.: Biased weighing designs, manuscript written in 1995, personal communication with the author.
  4. [4] DETTE, H.-STUDDEN, W. J.: Geometry of E-optimality, Ann. Stat. 21 (1993), 416-433.
  5. [5] FILOV´A, L.-TRNOVSK´A, M.-HARMAN, R.: Computing maximin efficient experimental designs using the methods of semidefinite programming, Metrika 75 (2012), 709-719.10.1007/s00184-011-0348-6
  6. [6] FILOV´A, L.-HARMAN, R.- KLEIN, T.: Approximate E-optimal designs for the model of spring balance weighing with a constant bias, J. Stat. Plann. Inference 141 (2011), 2480-2488.10.1016/j.jspi.2011.02.011
  7. [7] HARMAN, R.: Minimal efficiency of designs under the class of orthogonally invariant information criteria, Metrika 60 (2004), 137-153.10.1007/s001840300301
  8. [8] HARMAN, R.: Lower bounds on efficiency ratios based on Φp-optimal designs, in: mODa 7-Advances in Model-Oriented Design and Analysis (A. Giovagnoli et al., eds.), Bertinoro, Italy, 2010, Physica-Verlag, Heidelberg, 2004, pp. 89-96.10.1007/978-3-7908-2693-7_10
  9. [9] JACROUX, M.-NOTZ, W.: On the optimality of spring balance weighing designs, Ann. Stat. 11 (1983), 970-978.10.1214/aos/1176346262
  10. [10] P´AZMAN, A.: Foundations of Optimum Experimental Design. D. Reidel, Dordrecht, 1986.
  11. [11] PUKELSHEIM, F.: Optimal Design of Experiments. JohnWiley & Sons, New York, 1993.
  12. [12] STURM, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optim. Methods Softw. 11-12 (1999), 625-653.10.1080/10556789908805766
DOI: https://doi.org/10.2478/v10127-012-0003-2 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 23 - 32
Published on: Nov 13, 2012
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2012 Lenka Filová, Radoslav Harman, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons License.