Have a personal or library account? Click to login
K-nearest neighbour kernel density estimation, the choice of optimal k Cover

K-nearest neighbour kernel density estimation, the choice of optimal k

By: Jan Orava  
Open Access
|Nov 2012

References

  1. [1] BOWMAN, A. W.: An alternative method cross-validation for the smoothing of density estimates, Biometrika 71 (1984), 353-360.10.1093/biomet/71.2.353
  2. [2] GYÖRFI, L.: On the rate of convergence of nearest neighbor rules, IEEE Trans. Inform. Theory 24 (1978), 509-512.10.1109/TIT.1978.1055898
  3. [3] GYÖRFI, L.: The rate of convergence of kn-nn regression estimates and classification rules, IEEE Trans. Inform. Theory 27 (1981), 362-364.10.1109/TIT.1981.1056344
  4. [4] MACK, Y. P.-ROSENBLATT, M.: Multivariate k-nearest neighbour density estimates, J. Multivariate Anal. 9 (1979), 1-15.10.1016/0047-259X(79)90065-4
  5. [5] ORAVA, J.: K-nearest neighbour kernel density estimation, the choice of optimal k, Biometrika (accepted).
  6. [6] VAN RYZIN, J.: On strong consistency of density estimates, Ann. Math. Statist. 40 (1969), 1765-1772.10.1214/aoms/1177697388
  7. [7] WAND, M. P.-JONES, M. C.: Kernel Smothing. Chapman and Hall, London, 1995.10.1007/978-1-4899-4493-1
DOI: https://doi.org/10.2478/v10127-011-0035-z | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 39 - 50
Published on: Nov 13, 2012
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2012 Jan Orava, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons License.