Have a personal or library account? Click to login
A generalized Bernstein approximation theorem Cover
Open Access
|Nov 2012

References

  1. [1] BERNSTEIN, S.: D´emonstration du th´eor`eme de Weierstrass, fonde´e sur le calcul des probabilit´es, Commun. Soc. Math. Kharkov 2 (1912/13), 1-2.
  2. [2] BUTZER, P. L.: On two-dimensional Bernstein polynomials, Canad. J. Math. 5 (1953), 107-113.10.4153/CJM-1953-014-2
  3. [3] CHILDS, L.: A Concrete Introduction to Higher Algebra, in: Undergrad. Texts Math., Springer-Verlag, Berlin, 1979.10.1007/978-1-4684-0065-6
  4. [4] HILDEBRANDT, T. H.-SCHOENBERG, I. J.: On linear functional operations and the moment problem for a finite interval in one or several dimensions, Ann. Math. 2 (1933), 317-328.10.2307/1968205
  5. [5] LORENTZ, G. G.: Bernstein Polynomials, in: Mathematical Expositions, Vol. 8, University of Toronto Press, Toronto, 1953.
  6. [6] PˇALTINEANU, G.: Clase de mult¸imi de interpolare ˆın raport cu un subspat¸iu de funct¸ii continue, in: Structuri de ordineˆın analiza funct¸ionalˇa, Vol. 3, Editura Academiei Romˇane, Bucure¸sti, 1992, pp. 121-162.
  7. [7] PROLLA, J. B.: A generalized Bernstein approximation theorem, Math. Proc. Cambridge Phil. Soc. 104 (1988), 317-330.10.1017/S030500410006549X
DOI: https://doi.org/10.2478/v10127-011-0029-x | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 99 - 109
Published on: Nov 13, 2012
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2012 Miloslav Duchoň, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons License.