Abstract
A Henstock-Kurzweil type integral on a compact zero-dimensional metric space is investigated. It is compared with two Perron type integrals. It is also proved that it covers the Lebesgue integral.
A Henstock-Kurzweil type integral on a compact zero-dimensional metric space is investigated. It is compared with two Perron type integrals. It is also proved that it covers the Lebesgue integral.
© 2012 Francesco Tulone, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons License.