Have a personal or library account? Click to login
On some new subfamilies of classical spaces of absolutely p-summable sequences Cover

On some new subfamilies of classical spaces of absolutely p-summable sequences

By: Roman Witula and  Damian Slota  
Open Access
|Nov 2012

References

  1. [1] ANDERSON, J.: Iterated exponentials, Amer. Math. Monthly 111 (2004), 668-679.10.1080/00029890.2004.11920128
  2. [2] BIR´O, A.: Notes on nonnegative convergent series, Real Anal. Exchange 18 (1992/93), 480-489.10.2307/44152295
  3. [3] BROMWICH, T. J. I’A.: An Introduction to the Theory of Infinite Series. Merchant Books, Louisiana, USA, 2008.
  4. [4] GURARIE, D.-GOLDSTERN, M.-MARTIN, R.: Problem E3381, Amer. Math. Monthly 99 (1992), 165-166.10.2307/2324194
  5. [5] HILLAR, CH. J.-FITZSIMMONS, P. J.: Convergent series with exponents: 10928, Amer. Math. Monthly 110 (2003), 444-445.10.2307/3647843
  6. [6] KNOEBEL, R. A.: Exponentials reiterated, Amer. Math. Monthly 88 (1981), 235-252.10.1080/00029890.1981.11995239
  7. [7] PATAKI, G.: On the convergence of some particular series, Tatra Mt. Math. Publ. 28 (2004), 169-177.
  8. [8] PRUS-WI´SNIOWSKI, F.: Real Series. Wyd. Nauk. Uniw. Szczeci´nskiego, Szczecin, 2005. (In Polish)
  9. [9] PRUS-WI´SNIOWSKI, F.: On the convergence of the series Pa 1−yn n , Tatra Mt. Math. Publ. 34 (2006), 183-188.
  10. [10] WIMP, J.-SCHILLING, K.: Serendipitous solution: 10428, Amer. Math. Monthly 110 (2003), 445.10.2307/3647844
  11. [11] WITU LA, R.: Divergent vector sequences {yn} with Δyn → 0, Colloq. Math. 107 (2007), 263-266.10.4064/cm107-2-5
DOI: https://doi.org/10.2478/v10127-011-0022-4 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 27 - 48
Published on: Nov 13, 2012
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2012 Roman Witula, Damian Slota, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons License.