Have a personal or library account? Click to login
Brooks-Jewett-type theorems for the pointwise ideal convergence of measures with values in (l)-groups Cover

Brooks-Jewett-type theorems for the pointwise ideal convergence of measures with values in (l)-groups

Open Access
|Nov 2012

References

  1. [1] BALCERZAK, M.-DEMS, K.-KOMISARSKI, A.: Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl. 328 (2007), 715-729.10.1016/j.jmaa.2006.05.040
  2. [2] BERNAU, S. J.: Unique representation of Archimedean lattice group and normal Archimedean lattice rings, Proc. London Math. Soc. 15 (1965), 599-631.10.1112/plms/s3-15.1.599
  3. [3] BOCCUTO, A.: Vitali-Hahn-Saks and Nikodym theorems for means with values in Riesz spaces, Atti Sem. Mat. Fis. Univ. Modena 44 (1996), 157-173.
  4. [4] BOCCUTO, A.: Egorov property and weak _-distributivity in Riesz spaces, Acta Math. (Nitra) 6 (2003), 61-66.
  5. [5] BOCCUTO, A.-CANDELORO, D.: Uniform s-boundedness and convergence results for measures with values in complete l-groups, J. Math. Anal. Appl. 265 (2002), 170-194.10.1006/jmaa.2001.7715
  6. [6] BOCCUTO, A.-CANDELORO, D.: Defining limits by means of integrals, Oper. Theory Adv. Appl. 201 (2009), 79-87.
  7. [7] BOCCUTO, A.-DIMITRIOU, X.-PAPANASTASSIOU, N.: Limit theorems in (l)- -groups with respect to (D)-convergence, Dipartimento di Matematica e Informatica, Uni- versity of Perugia, Technical Report n. 2010/5.
  8. [8] BOCCUTO, A.-DIMITRIOU, X.-PAPANASTASSIOU, N.: Basic matrix theorems for I-convergence in (l)-groups, Math. Slovaca (2011), to appear.10.2478/s12175-012-0053-6
  9. [9] BOCCUTO, A.-RIEˇCAN, B.-VR´ABELOV´A, M.: Kurzweil-Henstock Integral in Riesz Spaces. Bentham Science Publ., USA, Oak Park, IL, 2009.
  10. [10] DEMARR, R. E.: Order convergence and topological convergence, Proc. Amer. Math. Soc. 16 (1965), 588-590.10.1090/S0002-9939-1965-0178449-3
  11. [11] DIMITRIOU, X.-BOCCUTO, A.-PAPANASTASSIOU, N.: Schur and matrix theo- rems with respect to I-convergence, in: Proc. 13th Greek Math. Anal. Conf., Ioaninna, June 2010, to appear.
  12. [12] FREEDMAN, A. R.-SEMBER, J. J.: Densities and summability, Pacific J. Math. 95 (1981), 293-305.10.2140/pjm.1981.95.293
  13. [13] FRIDY, J. A.: On statistical convergence, Analysis 5 (1985), 301-313.10.1524/anly.1985.5.4.301
  14. [14] HENRIKSEN, M.: Multiplicative summability methods and the Stone-ˇCech compactifica- tion, Math. Zeitschr. 71 (1959), 427-435.10.1007/BF01181414
  15. [15] KOSTYRKO, P.-ˇ SAL´A T, T.-WILCZY´NSKI, W.: I-convergence, Real Anal. Exch. 26 (2000/2001), 669-685.10.2307/44154069
  16. [16] MAY, R. W.-MCARTHUR, C. W.: Comparison of two types of order convergence with topological convergence in an ordered topological vector space, Proc. Amer. Math. Soc. 63 (1977), 49-55.10.1090/S0002-9939-1977-0438078-9
  17. [17] RIEˇCAN, B.-NEUBRUNN, T.: Integral, Measure and Ordering. Kluwer Acad. Publ., Dordrecht, 1997; Ister Science, Bratislava, 1997.10.1007/978-94-015-8919-2
DOI: https://doi.org/10.2478/v10127-011-0021-5 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 17 - 26
Published on: Nov 13, 2012
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2012 Antonio Boccuto, Nikolas Papanastassiou, Xenofon Dimitriou, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons License.