Have a personal or library account? Click to login
On the oscillation of third-order quasi-linear delay differential equations Cover

On the oscillation of third-order quasi-linear delay differential equations

Open Access
|Nov 2012

References

  1. [1] AGARWAL, R. P.-GRACE, S. R.-O’REGAN, D.: Oscillation Theory for Difference and Functional Differential Equations, Kluwer Acad. Publ., Dordrecht, 2000.10.1007/978-94-015-9401-1
  2. [2] AGARWAL, R. P.-BOHNER, M.-LI, W. T.: Nonoscillation and Oscillation: Theory of Functional Differential Equations, Marcel Dekker, New York, 2004.10.1201/9780203025741
  3. [3] ERBE, L. H.-KONG, Q.-ZHANG, B. G.: Oscillation Theory for Functional Differential Equations. Marcel Dekker, New York, 1995.
  4. [4] HARTMAN, P.-WINTER, A.: Linear differential and difference equations with mono- tone solutions, Amer. J. Math. 75 (1953), 731-743.10.2307/2372548
  5. [5] HANAN, M.: Oscillation criteria for third order differential equations, Pacific J. Math. 11 (1961), 919-944.10.2140/pjm.1961.11.919
  6. [6] ERBE, L.: Existence of oscillatory solutions and asymptotic behavior for a class of third order linear differential equations, Pacific J. Math. 64 (1976), 369-385.10.2140/pjm.1976.64.369
  7. [7] Dˇ ZURINA, J.: Asymptotic properties of the third order delay differential equations, Non- linear Anal. 26 (1996), 33-39.10.1016/0362-546X(94)00239-E
  8. [8] HASSAN, T. S.: Oscillation of third order nonlinear delay dynamic equations on time scales, Math. Comput. Modelling 49 (2009), 1573-1586.10.1016/j.mcm.2008.12.011
  9. [9] LI, T.-HAN, Z.-SUN, S.-ZHAO, Y.: Oscillation results for third order nonlinear delay dynamic equations on time scales, Bull. Mala. Math. Sci. Soc., 2010 (to appear).10.1155/2010/586312
  10. [10] BACUL´IKOV´A, B.-AGARWAL, R. P.-LI, T.-Dˇ ZURINA, J.: Oscillation of third- -order nonlinear functional differential equations with mixed arguments, Acta Math. Hungar. 2010 (to appear).
  11. [11] BACUL´IKOV´A, B.-ELABBASY, E. M.-SAKER, S. H.-Dˇ ZURINA, J.: Oscillation criteria for third-order nonlinear differential equations, Math. Slovaca 58 (2008), 1-20.10.2478/s12175-007-0049-9
  12. [12] BACUL´IKOV´A, B.-Dˇ ZURINA, J.: Oscillation of third-order nonlinear differential equa- tions, Appl. Math. Lett. 24 (2011), 466-470.10.1016/j.aml.2010.10.043
  13. [13] BACUL´IKOV´A, B.-Dˇ ZURINA, J.: Oscillation of third-order functional differential equations, Electron. J. Qual. Theory Differ. Equ. 43 (2010), 1-10.10.14232/ejqtde.2010.1.43
  14. [14] BACUL´IKOV´A, B.-Dˇ ZURINA, J.: Oscillation of third-order neutral differential equa- tions, Math. Comput. Modelling 52 (2010), 215-226.10.1016/j.mcm.2010.02.011
  15. [15] GRACE, S. R.-AGARWAL, R. P.-PAVANI, R.-THANDAPANI, E.: On the oscilla- tion of certain third order nonlinear functional differential equations, Appl. Math. Com- put. 202 (2008), 102-112.
  16. [16] SAKER, S. H.: Oscillation criteria of certain class of third-order nonlinear delay differ- ential equations, Math. Slovaca 56 (2006), 433-450.
  17. [17] SAKER, S. H.-Dˇ ZURINA, J.: On the oscillation of certain class of third-order nonlinear delay differential equations, Math. Bohem., 135 (2010), 225-237.10.21136/MB.2010.140700
DOI: https://doi.org/10.2478/v10127-011-0011-7 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 117 - 123
Published on: Nov 13, 2012
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2012 Tongxing Li, Chenghui Zhang, Blanka Baculíková, Jozef Džurina, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons License.