Have a personal or library account? Click to login
Oscillation theorems for second order advanced neutral differential equations Cover

Oscillation theorems for second order advanced neutral differential equations

By: Jozef Džurina  
Open Access
|Nov 2012

References

  1. [1] AGARWAL, R. P.-GRACE, S. R.: Oscillation theorems for certain neutral functional differential equations, Comput. Math. Appl. 38 (1999), 1-11.10.1016/S0898-1221(99)00280-1
  2. [2] BACUL´IKOV´A, B.: Oscillation criteria for second order nonlinear differential equations, Arch. Math. (Brno) 42 (2006), 141-149.
  3. [3] BACUL´IKOV´A, B.: Oscillation theorems for third order neutral differential equations, Tatra Mt. Math. Publ., 2011 (to apear).
  4. [4] BACUL´IKOV´A, B.-LACKOV´A, D.: Oscillation criteria for second order retarded dif- ferential equations, Stud. Univ. ˇ Zilina, Math. Ser. 20 (2006), 11-18.
  5. [5] BAINOV, D. D.-MISHEV, D. P.: Oscillation Theory for Nonlinear Differential Equations with Delay. Adam Hilger, Bristol, 1991.
  6. [6] DˇZURINA, J.-STAVROULAKIS, I. P.: Oscillation criteria for second order delay dif- ferential equations, Appl. Math. Comput. 140 (2003), 445-453.
  7. [7] ERBE, L. H.-KONG, Q.-ZHANG, B. G.: Oscillation Theory for Functional Differential Equations. Marcel Dekker, New York, 1994.
  8. [8] GRACE, S. R.-LALLI, B. S.: Oscillation of nonlinear second order neutral delay differ- ential equations, Rad. Math. 3 (1987), 77-84.
  9. [9] GRAMMATIKOPOULOS, M. K.-LADAS, G.-MEIMARIDOU, A.: Oscillation of second order neutral delay differential equation, Rad. Math. 1 (1985), 267-274.
  10. [10] LADDE, G. S.-LAKSHMIKANTHAM, V.-ZHANG, B. G.: Oscillation Theory of Differential Equations with Deviating Arguments. Marcel Dekker, New York, 1987.
  11. [11] KIGURADZE, I. T.-CHATURIA, T. A.: Asymptotic Properties of Solutions of Nonau- tonomous Ordinary Differential Equations. Kluwer Acad. Publ., Dordrecht, 1993.10.1007/978-94-011-1808-8_1
  12. [12] LI, T.-HAN, Z.-ZHANG, CH.-SUN, S.: Oscillation theorems for second-order neutral functional differential equations, J. Appl. Anal. (to appear).
  13. [13] LIN, X.-TANG, X. H.: Oscillation of solutions of neutral differential equations with superlinear neutral term, Appl. Math. Lett. 20 (2007), 1016-1022.10.1016/j.aml.2006.11.006
  14. [14] LIU, L. H.-BAI, Z.: New oscillation criteria for second-order nonlinear neutral delay differential equations, J. Comput. Appl. Math. 231 (2009), 657-663.10.1016/j.cam.2009.04.009
  15. [15] HASANBULLI, M.-ROGOVCHENKO, Y.: Oscillation criteria for second order non- linear neutral differential equations, Appl. Math. Comp. 215 (2010), 4392-4399.10.1016/j.amc.2010.01.001
  16. [16] ROGOVCHENKO, Y.-TUNCAY, F.: Oscillation criteria for second order nonlinear differential equations with damping, Nonlinear Anal. 69 (2008), 208-221.10.1016/j.na.2007.05.012
  17. [17] XU, R.-XIA, Y.: A note on the oscillation of second-order nonlinear neutral functional differential equations, J. Contemp. Math. Sci. 3 (2008), 1441-1450.
  18. [18] XU, R.-MENG, F.: Some new oscillation criteria for second order quasi-linear neutral delay differential equations, Appl. Math. Comput. 182 (2006), 797-803.
  19. [19] XU, R.-MENG, F.: Oscillation criteria for second order quasi-linear neutral delay dif- ferential equations, Appl. Math. Comput. 192 (2007), 216-222.
DOI: https://doi.org/10.2478/v10127-011-0006-4 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 61 - 71
Published on: Nov 13, 2012
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2012 Jozef Džurina, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons License.