Have a personal or library account? Click to login
Kernel-resolvent relations for an integral equation Cover

Kernel-resolvent relations for an integral equation

Open Access
|Nov 2012

References

  1. [1] BURTON, T. A.: Boundedness and periodicity in integral and integro-differential equations, Differential Equations Dynam. Systems 1 (1993), 161-172.
  2. [2] BURTON, T. A.: Liapunov Functionals for Integral Equations, Trafford, Victoria, B. C., Canada, 2008, (www.trafford.com/08-1365).
  3. [3] BURTON, T. A.: A Liapunov functional for a singular integral equation, Nonlinear Anal. 73 (2010), 3873-3882.10.1016/j.na.2010.08.016
  4. [4] BURTON, T. A.-DWIGGINS, D. P.: Resolvents, integral equations, and limit sets, Math. Bohem. 135 (2010), 337-354.10.21136/MB.2010.140824
  5. [5] BURTON, T. A.-DWIGGINS, D. P.: Smoothed integral equations, J. Math. Anal. Appl. 377 (2011), 319-335.10.1016/j.jmaa.2010.10.069
  6. [6] MILLER, R. K.: Nonlinear Volterra Integral Equations, W. A. Benjamin, Menlo Park, CA, 1971.
  7. [7] MILLER, R. K.-NOHEL, J. A.-WONG, J. S. W.: Perturbations of Volterra integral equations, J. Math. Anal. Appl. 25 (1969), 676-691.10.1016/0022-247X(69)90265-0
  8. [8] ISLAM, M. N.-NEUGEBAUER, J. T.: Qualitative properties of nonlinear Volterra in- tegral equations, Electron. J. Qual. Theory Differ. Equ. 12 (2008), 1-16.10.14232/ejqtde.2008.1.12
  9. [9] STRAUSS, A.: On a perturbed Volterra integral equation, J. Math. Anal. Appl. 30 (1970), 564-575.10.1016/0022-247X(70)90141-1
  10. [10] VOLTERRA, V.: Sur la th´eorie math´ematique des ph´enom`es h´er´editaires, J. Math. Pur. Appl. 7 (1928), 249-298.
DOI: https://doi.org/10.2478/v10127-011-0003-7 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 25 - 40
Published on: Nov 13, 2012
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2012 Theodore A. Burton, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons License.