Have a personal or library account? Click to login
Cryptographic aspects of real hyperelliptic curves Cover
Open Access
|Nov 2012

References

  1. [1] AVANZI, R.-JACOBSON, M. J., JR.-SCHEIDLER, R.: Efficient reduction of large divisors on hyperelliptic curves, Adv. Math. Communications 4 (2010), 261-279.10.3934/amc.2010.4.261
  2. [2] BERNSTEIN, D. J.-LANGE, T.: Faster addition and doubling on elliptic curves, in: Advances in Cryptology-ASIACRYPT ’07, Kuching, Malaysia, 2007 (K. Kurosawa, ed.), Lecture Notes in Comput. Sci., Vol. 4833, Springer, Berlin, 2008, pp. 29-50.
  3. [3] BUCHMANN, J.: A subexponential algorithm for the determination of class groups and regulators of algebraic number fields, in: S´eminaire de Th´eorie des Nombres, Paris, 1988-89, Prog. Math., Vol. 91, 1990, pp. 27-41.
  4. [4] CANTOR, D. G.: Computing the Jacobian of a hyperelliptic curve, Math. Comp. 48 (1987), 95-101.10.1090/S0025-5718-1987-0866101-0
  5. [5] CASSELS, J. W. S.-FLYNN, E. V.: Prolegomena to a Middlebrow Arithmetic of Curvesof Genus 2, in: London Math. Soc. Lecture Note Ser., Vol. 230, Cambridge Univ. Press, Cambridge, 1996.10.1017/CBO9780511526084
  6. [6] CHEN, Z.-STORJOHANN, A.-FLETCHER, C.: IML: Integer Matrix Library (version 1.0.2), http://www.cs.uwaterloo.ca/ z4chen/iml.html, 2007.
  7. [7] COHEN, H.-FREY, G.-AVANZI, R.-DOCHE, C.-LANGE, T.-NGUYEN, K.- -VERCAUTEREN, F.: Handbook of Elliptic and Hyperelliptic Curve Cryptography, in: Discrete Math. Appl., Chapman & Hall/CRC, Boca Raton, FL, 2006.10.1201/9781420034981
  8. [8] DIFFIE, W.-HELLMAN, M. E.: New directions in cryptography, IEEE Trans. Inform. Theory 22 (1976), 644-654.10.1109/TIT.1976.1055638
  9. [9] ELGAMAL, V.: A public-key cryptosystem and a signature scheme based on discrete logarithms, IEEE Trans. Inform. Theory IT-31 (1985), 469-472.10.1109/TIT.1985.1057074
  10. [10] ERICKSON, S.-HO, T.-ZEMEDKUN, S.: Explicit projective formulas for real hyperelliptic curves of genus 2, 2009 (in preparation).
  11. [11] ERICKSON, S.-JACOBSON,M. J., JR.-SHANG, N.-SHEN, S.-STEIN, A.: Explicit formulas for real hyperelliptic curves of genus 2 in affine representation, in: Proceedings of First InternationalWorkshop-WAIFI ’07, Madrid, 2007 (C. Carlet et al., eds.), Lecture Notes in Comput. Sci., Vol. 4547, Springer, Berlin, 2007, pp. 202-218.
  12. [12] ERICKSON, S.-JACOBSON, M. J. JR.-STEIN, A.: Explicit formulas for real hyperelliptic curves of genus 2 in affine representation, 2009 (in preparation).
  13. [13] FONTEIN, F.: Groups from cyclic infrastructures and Pohlig-Hellman in certain infrastructures, Adv. Math. Commun. 2 (2008), 293-307.10.3934/amc.2008.2.293
  14. [14] , The Infrastructure of a Global Field and Baby Step-Giant Step Algorithms. Ph.D. Thesis, University of Z¨urich, Z¨urich, Switzerland, 2008.
  15. [15] GALBRAITH, S. D.-HARRISON, M.-MIRELES MORALES, D. J.: Efficient hyperelliptic curve arithmetic using balanced representation for divisors, in: Algorithmic Number Theory-ANTS ’08, Banff, Canada, 2008 (A. van der Poorten, ed.), Lecture Notes in Comput. Sci., Vol. 5011, Springer, Berlin, 2008, pp. 342-356.
  16. [16] GALBRAITH, S. D.-LIN, X.-MIRELES MORALES, D. J.: Pairings on hyperelliptic curves with a real model, in: Pairing-Based Cryptography-Pairing ’08 (S. Galbraith, ed.) Egham, UK, 2008, Lecture Notes in Comput. Sci., Vol. 5209, Springer, Berlin, 2008, pp. 265-281.
  17. [17] GALBRAITH, S. D.-PUJOLAS, J.-RITZENTHALER, C.-SMITH, B.: Distortion maps for supersingular genus two curves, J. Math. Cryptology 3 (2009), 1-18.10.1515/JMC.2009.001
  18. [18] GAUDRY, P.-THOM´E, E.-TH´ERIAULT, N.-DIEM, C.: A double large prime variation for small genus hyperelliptic index calculus, Math. Comp. 76 (2007), 475-492.10.1090/S0025-5718-06-01900-4
  19. [19] HAMMELL, J. F.: Index Calculus in the Infrastructure of Real Quadratic Function Fields. Master’s Thesis, University of Calgary, Canada, 2008.
  20. [20] HAMMELL, J. F.-JACOBSON, M. J., JR.: Index-calculus algorithms in real quadratic function fields, 2009 (in preparation).
  21. [21] HANKERSON, D.-MENEZES, A.-VANSTONE, S.: Guide to Elliptic Curve Cryptography. Springer, New York, 2004.
  22. [22] IMBERT, L.-JACOBSON, M. J., JR.-SCHMIDT, A.: Fast ideal cubing in imaginary quadratic number and function fields, Adv. Math. Communications 4 (2010), 237-260.10.3934/amc.2010.4.237
  23. [23] JACOBSON, M. J., JR.-MENEZES, A. J.-STEIN, A.: Hyperelliptic curves and cryptography, in: Selected papers from the International Conference on Number Theory, Banff, AB, Canada, 2003 (A. van der Poorten, et. al., eds.), Fields Inst. Commun., Vol. 41, Amer. Math. Soc., Providence, RI, 2004, pp. 255-282.10.1090/fic/041/21
  24. [24] JACOBSON, M. J., JR.-SCHEIDLER, R.-STEIN, A.: Cryptographic protocols on real and imaginary hyperelliptic curves, Adv. Math. Commun. 1 (2007), 197-221.10.3934/amc.2007.1.197
  25. [25] , Fast arithmetic on hyperelliptic curves via continued fraction expansions, in: Advances in Coding Theory and Cryptology (T. Shaska, T. et al., eds.), Series on Coding Theory and Cryptology, Vol. 3, World Scientific, Hackensack, NJ, 2007, pp. 200-243.10.1142/9789812772022_0013
  26. [26] JACOBSON, M. J., JR.-STEIN, A.-VELICHKA, M. D.: Computing discrete logarithms on high-genus hyperelliptic curves over even characteristic finite fields (in preparation), 2009.
  27. [27] JACOBSON, M. J., JR.-VAN DER POORTEN, A. J.: , Computational aspects of NUCOMP, in: Algorithmic Number Theory-ANTS-V, Sydney, Australia, 2002 (C. Fieker et al., eds.), Lecture Notes in Comput. Sci., Vol. 2369, Springer, Berlin, 2002, pp. 120-133.
  28. [28] KOBLITZ, N.: Elliptic curve cryptosystems, Math. Comp. 48 (1987), 203-209.10.1090/S0025-5718-1987-0866109-5
  29. [29] , Hyperelliptic cryptosystems, J. Cryptology 1 (1989), 139-150.10.1007/BF02252872
  30. [30] LANGE, T.: Formulae for arithmetic on genus 2 hyperelliptic curves, Appl. Algebra Engrg. Comm. Comput. 15 (2005), 295-328.10.1007/s00200-004-0154-8
  31. [31] MENEZES, A. J.-WU, Y.-H.-ZUCCHERATO, R. J.: An elementary introduction to hyperelliptic curves, in: Algebraic Aspects of Cryptography, Algorithms Comput. Math., Vol. 3, Springer, Berlin, 1998, pp. 155-178.
  32. [32] MILLER, V.: Use of elliptic curves in cryptography, in: Advances in Cryptology- -CRYPTO ’85, Santa Barbara, California, 1985, Lecture Notes in Comput. Sci., Vol. 218, Springer, Berlin, 1986, pp. 417-426.10.1007/3-540-39799-X_31
  33. [33] MIRELES MORALES, D. J.: An analysis of the infrastructure in real function fields, Eprint archive no. 2008/299, 2008.
  34. [34] M¨ULLER,V.-STEIN, A.-THIEL, C.: Computing discrete logarithms in real quadratic congruence function fields of large genus, Math. Comp. 68 (1999), 807-822.10.1090/S0025-5718-99-01040-6
  35. [35] PAULUS, S.-R¨UCK, H.-G.: Real and imaginary quadratic representations of hyperelliptic function fields, Math. Comp. 68 (1999), 1233-1241.10.1090/S0025-5718-99-01066-2
  36. [36] POHLIG, S. C.-HELLMAN, M. E.: An improved algorithm for computing logarithms over GF(p) and it’s cryptographic significance, IEEE Trans. Inf. Theory 24 (1978), 106-110.10.1109/TIT.1978.1055817
  37. [37] SCHEIDLER, R.: Cryptography in quadratic function fields, Des. Codes Cryptogr. 22 (2001), 239-264.10.1023/A:1008346322837
  38. [38] SCHEIDLER, R.-BUCHMANN, J. A.-WILLIAMS, H. C.: A key exchange protocol using real quadratic fields, J. Cryptology 7 (1994), 171-199.10.1007/BF02318548
  39. [39] SCHEIDLER, R.-STEIN, A.-WILLIAMS, H. C.: Key-exchange in real quadratic congruence function fields, Des. Codes Cryptogr. 7 (1996), 153-174.
  40. [40] SHANKS, D.: The infrastructure of a real quadratic field and its applications, in: Proceedings of Number Theory Conf., Univ. Colorado, Boulder, Colorado, 1972, pp. 217-224.
  41. [41] SHOUP, V.: NTL: A Library for doing Number Theory (version 5.4.2), 2008, http://www.shoup.net.
  42. [42] STEIN, A.: Equivalences between elliptic curves and real quadratic congruence function fields, J. Th´eorie Nombr. Bordeaux 9 (1997), 75-95.10.5802/jtnb.191
  43. [43] , Sharp upper bounds for arithmetics in hyperelliptic function fields, J. Ramanujan Math. Soc. 16 (2001), 1-86.
  44. [44] STEIN, A.-TESKE, E.: Explicit bounds and heuristics on class numbers in hyperelliptic function fields, Math. Comp. 71 (2002), 837-861.10.1090/S0025-5718-01-01385-0
  45. [45] , The parallelized Pollard kangaroo method in real quadratic function fields, Math. Comp. 71 (2002), 793-814.
  46. [46] , Optimized baby-step giant-step methods in hyperelliptic function fields, J. Ramanujan Math. Soc. 20 (2005), 1-32.
  47. [47] STICHTENOTH, H.: Algebraic Function Fields and Codes (2nd ed.), Springer, Berlin, 2009.10.1007/978-3-540-76878-4
  48. [48] VELICHKA, M. D.: Improvements to Index Calculus Algorithms for Solving the HyperellipticCurve Discrete Logarithm Problem Over Characteristic Two Finite Fields. Master’s thesis, University of Calgary, Calgary, Canada, 2008.
DOI: https://doi.org/10.2478/v10127-010-0030-9 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 31 - 65
Published on: Nov 13, 2012
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2012 Michael J. Jacobson, Renate Scheidler, Andreas Stein, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons License.