Have a personal or library account? Click to login
On a family of preimage-resistant functions Cover
Open Access
|Nov 2012

References

  1. [1] AJTAI,M.-DWORK, C.: A public-key cryptosystem with worst-case/average-case equivalence, in: Proc. of the 29th Annual ACM Symposium on Theory of Computing- -STOC ’97, El Paso, TX, 1997, ACM Press, New York, NY, 1999, pp. 284-293.10.1145/258533.258604
  2. [2] AGNEW, G. B.-MULLIN, R. C.-ONYSZCHUK, I. M.-VANSTONE, S. A.: An im- plementation for a fast public-key cryptosystem, J. Cryptology 3 (1991), 63-79.10.1007/BF00196789
  3. [3] AGNEW, G. B.-MULLIN, R. C.-VANSTONE, S. A.: An implementation of elliptic curve cryptosystems over F2155, IEEE J. Selected Areas in Comm. 11 (1993), 804-813.10.1109/49.223883
  4. [4] AUMASSON, J.-P.: Cryptanalysis of a hash function based on norm form equations, Cryptologia 33 (2009), 1-4.10.1080/01611190802306793
  5. [5] BERNSTEIN, D. J.-LANGE, T.: Type-II optimal polynomial bases, http://eprint.iacr.org/2010/069. 10.1007/978-3-642-13797-6_4
  6. [6] BERLEKAMP, E. R.: Factoring polynomials over large finite fields, Math. Comp. 24 (1970), 713-715.10.1090/S0025-5718-1970-0276200-X
  7. [7] B´ ERCZES, A.-K¨O DM¨ON, J.-PETH˝O, A.: A one-way function based on norm form equations, Period. Math. Hungar. 49 (2004), 1-13.10.1023/B:MAHU.0000040535.45427.38
  8. [8] B´ERCZES, A.-J´AR´ASI, I.: An application of index forms in cryptography, Period. Math. Hungar. 58 (2008), 35-45.10.1007/s10998-009-9035-8
  9. [9] BUCHMANN, J.-PAULUS, S.: A one way function based on ideal arithmetic in number fields, in: Advances in Cryptology-CRYPTO ’97, Proc. of the 17th Annual International Cryptology Conference, Santa Barbara, CA, USA, 1997 (B. S. Kaliski, jr., ed.), Lect. Notes in Comput. Sci., Vol. 1294, Springer, Berlin, 1997, pp. 385-394.
  10. [10] CAFURE, A.-MATERA, G.: Improved explicit estimates on the number of solutions of equations over a finite field, Finite Fields Appl. 12 (2006), 155-185.10.1016/j.ffa.2005.03.003
  11. [11] CANTOR, D. G.-ZASSENHAUS, H.: A new algorithm for factoring polynomials over finite fields, Math. Comp. 36 (1981), 587-592.10.1090/S0025-5718-1981-0606517-5
  12. [12] CHAO, L. R.-LIN, Y. C.: Associative one-way function and its significances to crypto- graphics, Internat. J. Inform. Management. Sci. 5 (1994), 53-59.
  13. [13] CONTINI, S.-LENSTRA, A. K.-STEINFELD, R.: VSH, an efficient and provable collision-resistant hash function, in: Advances in Cryptology-EUROCRYPT ’06, Proc. of the 25th Annual International Conference on the Theory and Applications of Cryptographic Techniques, St. Petersburg, Russia, 2006 (S. Vaudenay, ed.), Lecture Notes in Comput. Sci., Vol. 4004, Springer, Berlin, 2006, pp. 165-182,10.1007/11761679_11
  14. [14] GOLDREICH, O.-LEVIN, L.-NISAN, N.: On constructing 1-1 one-way functions, ECCC, TR-95-029, 6/25/95, 1995.
  15. [15] HASAN, M. A.-WANG, M. Z.-BHARGAVA, V. K.: A modified Massey-Omura parallel multiplier for a class of finite fields, IEEE Trans. Computers, Vol. 42, Washington, DC, 1993, pp. 1278-1280.10.1109/12.257715
  16. [16] HEMASPAANDRA, L. A.-ROTHE, J.: Creating strong, total, commutative, associative one-way functions from any one-way function in complexity theory, J. Comput. System Sci. 58 (1999), 648-659.10.1006/jcss.1998.1613
  17. [17] KALTOFEN, E.-KOIRAN, P.: On the complexity of factoring bivariate supersparse (lacunary) polynomials, in: Proc. of the 2005 International Symposium on Symbolic and Algebraic Computation-ISSAC ’05, Beijing, China, 2005 (M. Kauers, ed.), ACM Press, New York, NY, 2005, pp. 208-215.10.1145/1073884.1073914
  18. [18] LANG, S.-WEIL, A.: The number of points of varieties in finite fields, Amer. J. Math. 76 (1954), 819-827.10.2307/2372655
  19. [19] LIDL, R.-NIEDERREITER, H.: Finite Fields (2nd ed.), Encyclopedia Math. Appl., Vol. 20, Cambridge University Press, Cambridge, 1997.
  20. [20] MASSEY, J. L.-OMURA, J. K.: Computational Method and Apparatus for Finite Field Arithmetic. US Patent No. 4,587,627, 1986.
  21. [21] MENEZES, A. J.-VAN OORSCHOT, P. C.-VANSTONE, S.: Handbook of Applied Cryptography. CRC Press, 1997.
  22. [22] MERKLE, R.C.: A fast software one-way hash function, J. Cryptology 3 (1990), 43-58.10.1007/BF00203968
  23. [23] PAPADIMITRIOU, C. H.: Computational Complexity. Addison-Wesley Publ. Comp., Reading, MA, 1994.
  24. [24] REYHANI-MASOLEH, A.-HASAN, M. A.: Fast normal basis multiplication using general purpose processors, IEEE Trans. Computers, Vol. 52, Washington, DC, 2003, pp. 1379-1390.10.1109/TC.2003.1244936
  25. [25] ROGAWAY, P.-SHRIMPTON, T.: Cryptographic hash-function basics: definitions, im- plications, and separations for preimage resistance, second-preimage resistance, and col- lision resistance, in: Fast Software Encryption-FSE ’04, 11th International Workshop, Delhi, India, 2004 (B. Roy et al., eds.), Lecture Notes in Comput. Sci., Vol. 3017, Springer, Berlin, 2004, pp. 371-388.
  26. [26] SCHINZEL, A.: On reducible trinomials, Dissertationes Math. (Rozprawy Mat.) 329 (1993); errata, Acta Arith. 73 (1995), 399-400.
  27. [27] SCHINZEL, A.: On reducible trinomials. II, Publ. Math. Debrecen 56 (2000), 575-608.10.5486/PMD.2000.2307
  28. [28] SCHINZEL, A.: On reducible trinomials. III, Period. Math. Hungar. 43 (2001), 43-69.10.1023/A:1015277414179
  29. [29] SCHMIDT, W. M.: A lower bound for the number of solutions of equations over finite fields, J. Number Theory 6 (1974), 448-480.10.1016/0022-314X(74)90043-2
  30. [30] SCHNEIER, B.: Applied Cryptography. John Wiley & Sons, New York, NY, 1996.
  31. [31] SHPARLINSKI, I.: Number Theoretic Methods in Cryptography. Complexity Lower Bounds, in: Progr. Comput. Sci. Appl. Logic, Vol. 17, Birkh¨auser Verlag, Basel, 1999.
  32. [32] SUN, Q.: A kind of trap-door one-way function over algebraic integers, J. Sichuan Univ., Nat. Sci. Ed. 1986 (1986), 22-27.
  33. [33] SUNAR, B.-KOC, C. K.: An efficient optimal normal basis type II multiplier, IEEE Trans. Computers, Vol. 50, Washington, DC, 2001, pp. 83-88.10.1109/12.902754
DOI: https://doi.org/10.2478/v10127-010-0028-3 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 1 - 13
Published on: Nov 13, 2012
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2012 Attila Bérczes, János Folláth, Attila Pethő, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons License.