References
- [1] AJTAI,M.-DWORK, C.: A public-key cryptosystem with worst-case/average-case equivalence, in: Proc. of the 29th Annual ACM Symposium on Theory of Computing- -STOC ’97, El Paso, TX, 1997, ACM Press, New York, NY, 1999, pp. 284-293.10.1145/258533.258604
- [2] AGNEW, G. B.-MULLIN, R. C.-ONYSZCHUK, I. M.-VANSTONE, S. A.: An im- plementation for a fast public-key cryptosystem, J. Cryptology 3 (1991), 63-79.10.1007/BF00196789
- [3] AGNEW, G. B.-MULLIN, R. C.-VANSTONE, S. A.: An implementation of elliptic curve cryptosystems over F2155, IEEE J. Selected Areas in Comm. 11 (1993), 804-813.10.1109/49.223883
- [4] AUMASSON, J.-P.: Cryptanalysis of a hash function based on norm form equations, Cryptologia 33 (2009), 1-4.10.1080/01611190802306793
- [5] BERNSTEIN, D. J.-LANGE, T.: Type-II optimal polynomial bases, http://eprint.iacr.org/2010/069. 10.1007/978-3-642-13797-6_4
- [6] BERLEKAMP, E. R.: Factoring polynomials over large finite fields, Math. Comp. 24 (1970), 713-715.10.1090/S0025-5718-1970-0276200-X
- [7] B´ ERCZES, A.-K¨O DM¨ON, J.-PETH˝O, A.: A one-way function based on norm form equations, Period. Math. Hungar. 49 (2004), 1-13.10.1023/B:MAHU.0000040535.45427.38
- [8] B´ERCZES, A.-J´AR´ASI, I.: An application of index forms in cryptography, Period. Math. Hungar. 58 (2008), 35-45.10.1007/s10998-009-9035-8
- [9] BUCHMANN, J.-PAULUS, S.: A one way function based on ideal arithmetic in number fields, in: Advances in Cryptology-CRYPTO ’97, Proc. of the 17th Annual International Cryptology Conference, Santa Barbara, CA, USA, 1997 (B. S. Kaliski, jr., ed.), Lect. Notes in Comput. Sci., Vol. 1294, Springer, Berlin, 1997, pp. 385-394.
- [10] CAFURE, A.-MATERA, G.: Improved explicit estimates on the number of solutions of equations over a finite field, Finite Fields Appl. 12 (2006), 155-185.10.1016/j.ffa.2005.03.003
- [11] CANTOR, D. G.-ZASSENHAUS, H.: A new algorithm for factoring polynomials over finite fields, Math. Comp. 36 (1981), 587-592.10.1090/S0025-5718-1981-0606517-5
- [12] CHAO, L. R.-LIN, Y. C.: Associative one-way function and its significances to crypto- graphics, Internat. J. Inform. Management. Sci. 5 (1994), 53-59.
- [13] CONTINI, S.-LENSTRA, A. K.-STEINFELD, R.: VSH, an efficient and provable collision-resistant hash function, in: Advances in Cryptology-EUROCRYPT ’06, Proc. of the 25th Annual International Conference on the Theory and Applications of Cryptographic Techniques, St. Petersburg, Russia, 2006 (S. Vaudenay, ed.), Lecture Notes in Comput. Sci., Vol. 4004, Springer, Berlin, 2006, pp. 165-182,10.1007/11761679_11
- [14] GOLDREICH, O.-LEVIN, L.-NISAN, N.: On constructing 1-1 one-way functions, ECCC, TR-95-029, 6/25/95, 1995.
- [15] HASAN, M. A.-WANG, M. Z.-BHARGAVA, V. K.: A modified Massey-Omura parallel multiplier for a class of finite fields, IEEE Trans. Computers, Vol. 42, Washington, DC, 1993, pp. 1278-1280.10.1109/12.257715
- [16] HEMASPAANDRA, L. A.-ROTHE, J.: Creating strong, total, commutative, associative one-way functions from any one-way function in complexity theory, J. Comput. System Sci. 58 (1999), 648-659.10.1006/jcss.1998.1613
- [17] KALTOFEN, E.-KOIRAN, P.: On the complexity of factoring bivariate supersparse (lacunary) polynomials, in: Proc. of the 2005 International Symposium on Symbolic and Algebraic Computation-ISSAC ’05, Beijing, China, 2005 (M. Kauers, ed.), ACM Press, New York, NY, 2005, pp. 208-215.10.1145/1073884.1073914
- [18] LANG, S.-WEIL, A.: The number of points of varieties in finite fields, Amer. J. Math. 76 (1954), 819-827.10.2307/2372655
- [19] LIDL, R.-NIEDERREITER, H.: Finite Fields (2nd ed.), Encyclopedia Math. Appl., Vol. 20, Cambridge University Press, Cambridge, 1997.
- [20] MASSEY, J. L.-OMURA, J. K.: Computational Method and Apparatus for Finite Field Arithmetic. US Patent No. 4,587,627, 1986.
- [21] MENEZES, A. J.-VAN OORSCHOT, P. C.-VANSTONE, S.: Handbook of Applied Cryptography. CRC Press, 1997.
- [22] MERKLE, R.C.: A fast software one-way hash function, J. Cryptology 3 (1990), 43-58.10.1007/BF00203968
- [23] PAPADIMITRIOU, C. H.: Computational Complexity. Addison-Wesley Publ. Comp., Reading, MA, 1994.
- [24] REYHANI-MASOLEH, A.-HASAN, M. A.: Fast normal basis multiplication using general purpose processors, IEEE Trans. Computers, Vol. 52, Washington, DC, 2003, pp. 1379-1390.10.1109/TC.2003.1244936
- [25] ROGAWAY, P.-SHRIMPTON, T.: Cryptographic hash-function basics: definitions, im- plications, and separations for preimage resistance, second-preimage resistance, and col- lision resistance, in: Fast Software Encryption-FSE ’04, 11th International Workshop, Delhi, India, 2004 (B. Roy et al., eds.), Lecture Notes in Comput. Sci., Vol. 3017, Springer, Berlin, 2004, pp. 371-388.
- [26] SCHINZEL, A.: On reducible trinomials, Dissertationes Math. (Rozprawy Mat.) 329 (1993); errata, Acta Arith. 73 (1995), 399-400.
- [27] SCHINZEL, A.: On reducible trinomials. II, Publ. Math. Debrecen 56 (2000), 575-608.10.5486/PMD.2000.2307
- [28] SCHINZEL, A.: On reducible trinomials. III, Period. Math. Hungar. 43 (2001), 43-69.10.1023/A:1015277414179
- [29] SCHMIDT, W. M.: A lower bound for the number of solutions of equations over finite fields, J. Number Theory 6 (1974), 448-480.10.1016/0022-314X(74)90043-2
- [30] SCHNEIER, B.: Applied Cryptography. John Wiley & Sons, New York, NY, 1996.
- [31] SHPARLINSKI, I.: Number Theoretic Methods in Cryptography. Complexity Lower Bounds, in: Progr. Comput. Sci. Appl. Logic, Vol. 17, Birkh¨auser Verlag, Basel, 1999.
- [32] SUN, Q.: A kind of trap-door one-way function over algebraic integers, J. Sichuan Univ., Nat. Sci. Ed. 1986 (1986), 22-27.
- [33] SUNAR, B.-KOC, C. K.: An efficient optimal normal basis type II multiplier, IEEE Trans. Computers, Vol. 50, Washington, DC, 2001, pp. 83-88.10.1109/12.902754