Have a personal or library account? Click to login
Existence of continuous utility functions for arbitrary binary relations: some sufficient conditions Cover

Existence of continuous utility functions for arbitrary binary relations: some sufficient conditions

Open Access
|Nov 2012

References

  1. [1] AUMANN, R.: Utility theory without the completeness axiom, Econometrica 30 (1962), 445-462.10.2307/1909888
  2. [2] BACK, K.: Concepts of similarity for utility functions, J. Math. Econom. 15 (1986), 129-142.10.1016/0304-4068(86)90004-2
  3. [3] BOSI, G.-HERDEN, G.: The structure of completely useful and very useful topologies, 2006 (preprint).
  4. [4] BOSI, G.-HERDEN, G.: Continuous utility representations theorems in arbitrary concrete categories, Appl. Categ. Structures 16 (2008), 629-651.10.1007/s10485-007-9097-0
  5. [5] BOSI, G.-MEHTA, G. B.: Existence of a semicontinuous or continuous utility function: a unified approach and an elementary proof, J. Math. Econom. 38 (2002), 311-328.10.1016/S0304-4068(02)00058-7
  6. [6] BRIDGES, D. S.-MEHTA, G. B.: Representations of Preference Orderings, in: Lecture Notes in Econom. and Math. Systems, Vol. 422, Springer-Verlag, Berlin, 1995.10.1007/978-3-642-51495-1
  7. [7] CAMPI ´ON, M. J.-CANDEAL, J. C.-INDUR´AIN, E.: Semicontinuous orderrepresentability of topological spaces, Bol. Soc. Mat. Mexicana (3) 15 (2009), 81-90.
  8. [8] CANDEAL, J. C.-INDURAIN, E.-MEHTA, G. B.: Some utility theorems on inductive limits of preordered topological spaces, Bul. Austral. Math. Soc. 52 (1995), 235-246.10.1017/S0004972700014660
  9. [9] CASTAING, C.-RAYNAUD DE FITTE, P.-VALADIER, M.: Young Measures on Topological Spaces. With Applications in Control Theory and Probability Theory, in: Math. Appl., Vol. 571, Kluwer Academic Publ. Dordrecht, 2004.
  10. [10] CASTAING, C.-RAYNAUD DE FITTE, P.-SALVADORI, A.: Some variational convergence results with applications to evolution inclusions, in: Selected papers based on the presentation at the 3rd International Conference on Mathematical Analysis in Economic Theory (Sh. Kusuoka et al., eds.), Tokyo, Japan, 2004, Adv. Math. Econ., Vol. 8, Springer, Tokyo, 2006, pp. 33-73.10.1007/4-431-30899-7_2
  11. [11] CATERINO, A.-CEPPITELLI, R.-MACCARINO, F.: Continuous utility on hemicompact submetrizable k-spaces, Appl. Gen. Topol. 10 (2009), 187-195.10.4995/agt.2009.1732
  12. [12] CATERINO, A.-CEPPITELLI, R.-MEHTA, G. B.: Representations of topological preordered spaces, Math. Slovaca, 2008 (to appear).
  13. [13] CHATEAUNEUF, A.: Continuous representation of a preference relation on a connected topological space, J. Math. Econom. 16 (1987), 139-146.10.1016/0304-4068(87)90003-6
  14. [14] DEBREU, G.: Representation of a preference ordering by a numerical function, in: Decision Processes (R. Thrall, C. Coombs, R. Davies, eds.), Wiley, New York, 1954, pp. 159-166.
  15. [15] DEBREU, G.: Continuity properties of a Paretian utility, Internat. Econom. Rev. 5 (1964), 285-293.10.2307/2525513
  16. [16] EILENBERG, S.: Ordered topological spaces, Amer. J. Math. 63 (1941), 39-45.10.2307/2371274
  17. [17] ENGELKING, R.: General Topology. Rev. and Compl. Ed. . in: Sigma Ser. in Pure Math., Vol. 6, Heldermann Verlag, Berlin, 1989.
  18. [18] EST´EVEZ TORANZO,M.-HERV´ES BELOSO, C.: On the existence of continuous preference orderings without utility representations, J. Math. Econom. 24 (1995), 305-309.10.1016/0304-4068(94)00701-B
  19. [19] FRANKLIN, S. P.-SMITH THOMAS, B. V.: A survey of kù-spaces, in: Proc. Topol. Conf., Baton Rouge, LA, 1977, Topology Proc., Vol. 2, Auburn Univ., Auburn, AL, 1978, pp. 111-124.
  20. [20] HERDEN, G.: On the existence of utility functions, Math. Soc. Sci. 17 (1989), 297-313.10.1016/0165-4896(89)90058-9
  21. [21] HERDEN, G.: Topological spaces for which every continuous total preorder can be represented by a continuous utility function, Math. Soc. Sci. 22 (1991), 123-136.10.1016/0165-4896(91)90002-9
  22. [22] HERDEN, G.-PALLACK, A.: Useful topologies and separable systems, Appl. Gen. Topol. 1 (2000), 61-82.10.4995/agt.2000.3024
  23. [23] HERDEN, G.-PALLACK, A.: On the continuous analogue of the Szpilrajn Theorem I, Math. Soc. Sci. 43 (2002), 115-134.10.1016/S0165-4896(01)00077-4
  24. [24] LEVIN, V. L.: A continuous utility theorem for closed preorders on a σ-compact metrizable space, Soviet Math. Dokl. 28 (1983), 715-718.
  25. [25] LUTZER, D. J.-BENNET, H. R.: Separability, the countable chain condition and the Lindel¨of property on linearly ordered spaces, Proc. Amer. Math. Soc. 23 (1969), 664-667.
  26. [26] MCCOY, R. A.: Functions spaces which are k-spaces, in: The Proceedings of the 1980 Topology Conference (J. Dydak et al., eds.), Topology Proc., Vol. 5, Auburn Univ., Auburn, AL, USA, 1980, pp. 139-146.
  27. [27] MEHTA, G. B.: Some general theorems on the existence of order-preserving functions, Math. Soc. Sci. 15 (1988), 135-143.10.1016/0165-4896(88)90018-2
  28. [28] MEHTA, G. B.: Preference and Utility. in: Handbook of Utility Theory, Vol. 1 (S. Barber´a et al., eds.), Kluwer Academic Publ., Dordrecht, 1988, pp. 1-47.
  29. [29] MONTEIRO, P. K.: Some results on the existence of utility functions on path connected spaces, J. Math. Econom. 16 (1987), 147-156.10.1016/0304-4068(87)90004-8
  30. [30] NACHBIN, L.: Topology and Order. Van Nostrand, Princeton, 1965.
  31. [31] OK, E. A.: Utility representation of an incomplete preference relation, J. Econom. Theory 104 (2002), 429-449.10.1006/jeth.2001.2814
  32. [32] OK, E. A.: Functional representation of rotund-valued proper multifunctions, New York University, 2002 (preprint).
  33. [33] PELEG, B.: Utility functions for partially ordered topological spaces, Econometrica 38 (1970), 93-96.10.2307/1909243
  34. [34] STEEN, L. A.-SEEBACH, J. A.: Counterexamples in Topology. Dover Publ., New York, 1995.
DOI: https://doi.org/10.2478/v10127-010-0015-8 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 15 - 27
Published on: Nov 13, 2012
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2012 Gianni Bosi, Alessandro Caterino, Rita Ceppitelli, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons License.