Have a personal or library account? Click to login
On the use of the lattice sieve in the 3D NFS Cover
By: Pavol Zajac  
Open Access
|Nov 2012

References

  1. [1] AOKI, K.-KIDA, Y.-SHIMOYAMA, T.-UEDA, H.: GNFS factoring statisticsof RSA-100, 110, . . . , 150, April 16, 2004, http://eprint.iacr.org/2004/095.pdf.
  2. [2] COMMEINE, A.-SEMAEV, I.: An algorithm to solve the discrete logarithm problemwith the number field sieve, in: Public Key Cryptography-PKC ’06 (M. Yung et al., eds.), 9th International Conference on Theory and Practice of Public-Key Cryptography, New York, NY, USA, 2006, Lecture Notes in Comput. Sci., Vol. 3958, Springer-Verlag, Berlin, 2006, pp. 174-190.
  3. [3] JOUX, A.-LERCIER, R.: Improvements to the general number field sieve for discretelogarithms in prime fields: a comparison with the Gaussian integer method, Math. Comp. 72 (2003), 953-967.10.1090/S0025-5718-02-01482-5
  4. [4] JOUX, A.-LERCIER, R.-SMART, N.-VERCAUTEREN, F.: The number field sievein the medium prime case, in: Advances in Cryptology-CRYPTO ’06 (C. Dwork, ed.), 26th Annual International Cryptology Conference, Santa Barbara, California, USA, 2006, Lecture Notes in Comput. Sci., Vol. 4117, Springer-Verlag, Berlin, 2006, pp. 326-344.
  5. [5] The Development of the Number Field Sieve (A. K. Lenstra, H. W. Lenstra, Jr., eds.), Lecture Notes in Math., Vol. 1554, Springer-Verlag, Berlin, 1993.
  6. [6] LENSTRA, A. K.-LENSTRA, H. W., JR.-MANASSE, M. S.-POLLARD, J. M.: Thenumber field sieve, in: The Development of the Number Field Sieve (A. K. Lenstra, H. W. Lenstra, Jr., eds.), Lecture Notes in Math., Vol. 1554, Springer-Verlag, Berlin, 1993, pp. 11-42.
  7. [7] LENSTRA, A. K.-VERHEUL, E. R.: An overview of the XTR public key system, in: Public-Key Cryptography and Computational Number Theory (K. Alster et al., eds.) Proc. of the Internat. Conference Organized by the Stefan Banach Internat. Math. Center, Warsaw, Poland, 2000, de Gruyter, Berlin, 2001, pp. 151-180.
  8. [8] POLLARD, J.: The lattice sieve, in: The Development of the Number Field Sieve (A. K. Lenstra et al., eds.), Lecture Notes in Math., Vol. 1554, Springer-Verlag, Berlin, 1993, pp. 43-49.
  9. [9] SCHIROKAUER, O.: Virtual logarithms, J. Algorithms 57 (2005), 140-147.10.1016/j.jalgor.2004.11.004
  10. [10] ZAJAC, P.: Generalized line sieve algorithm, in: Proc. of ELITECH ’07, STU Bratislava, 2007.
  11. [11] ZAJAC, P.: Remarks on the NFS complexity, Tatra Mt. Math. Publ. 41 (2008), 79-91.
  12. [12] ZAJAC, P.: Discrete Logarithms and Degree Six Numbere Field Sieve: A practical Approach. VDM Verlag Dr. M¨uller, Saarbrücken, 2009.
DOI: https://doi.org/10.2478/v10127-010-0012-y | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 161 - 172
Published on: Nov 12, 2012
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2012 Pavol Zajac, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons License.