Have a personal or library account? Click to login
Open Access
|Nov 2012

References

  1. [1] ACZEL, J.: A mean value property of the derivative of quadratic polynomials-without mean values and, derivatives, Math. Mag. 58 (1985), 42-45.
  2. [2] ALSINA, C.-SABLIK, M.-SIKORSKA, J.: On a functional equation based upon a re­sult of Gaspard Monge, J. Geom. 85 (2006), 1-6.10.1007/s00022-006-0035-3
  3. [3] HARUKI, SH.: A property of quadratic polynomials, Amer. Math. Monthly 86 (1979), 577-579.10.1080/00029890.1979.11994859
  4. [4] KOCL^GA-KULPA, B.-SZOSTOK, Т.: On some equations connected to Hadamard inequalities, Aequationes Math. 75 (2008), 119-129.10.1007/s00010-007-2898-2
  5. [5] KUCZMA, M.: An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality. PWN, Warszawa, 1985.
  6. [6] KUCZMA, M.: An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality (2nd ed.), Birkhauser, Basel, 2009.10.1007/978-3-7643-8749-5
  7. [7] PAWLIKOWSKA, I.: Solutions of two functional equations using a result of M. Sablik, Aequationes Math. 72 (2006), 177-190.10.1007/s00010-005-2820-8
  8. [8] SAHOO, P. K.-RIEDEL, Т.: Mean Value Theorems and Functional Equations. World Scientific, Singapore, 1998.10.1142/3857
  9. [9] SABLIK, M.: Taylor's theorem and, functional equations, Aequationes Math. 60 (2000), 258-267.10.1007/s000100050152
  10. [10] Report of Meeting. The Fifth Katowice-Debrecen Winter Seminar on Functional Equations and Inequalities, Ann. Math. Sil. 19 (2005), 65-78.
DOI: https://doi.org/10.2478/v10127-009-0045-2 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 27 - 40
Published on: Nov 12, 2012
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 times per year

© 2012 Barbara Koclęga-Kulpa, Tomasz Szostok, Szymon Wąsowicz, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons License.