Have a personal or library account? Click to login

A telescoping principle for oscillation of the second order half-linear dynamic equations on time scales

Open Access
|Nov 2012

References

  1. [1] AGARWAL, R. P.: Difference Equations and Inequalities: Theory, Methods, and Applications (2nd ed.), Pure Appl. Math., Vol. 228, Marcel Dekker, New York, 2000.10.1201/9781420027020
  2. [2] AGARWAL, R. P.-BOHNER, M.-GRACE, S. R.-O’REGAN, D.: Discrete Oscillation Theory. Hindawi Publ. Co., New York, 2005.10.1155/9789775945198
  3. [3] BOHNER, M.: Linear Hamiltonian difference systems: disconjugacy and Jacobi-type conditions, J. Math. Anal. Appl. 199 (1996), 804-826.10.1006/jmaa.1996.0177
  4. [4] BOHNER, M.-PETERSON, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkh¨auser, Boston, 2001.10.1007/978-1-4612-0201-1
  5. [5] BOHNER, M.-PETERSON, A.: Advances in Dynamic Equations on Time Scales. Birkh¨auser, Boston, 2003.10.1007/978-0-8176-8230-9
  6. [6] DOˇSL´Y, O.: Qualitative theory of half-linear second order differential equations, Math. Bohem. 127 (2002), 181-195.10.21136/MB.2002.134170
  7. [7] DOˇSL´Y, O.-ˇREH´AK, P.: Nonoscilation criteria for second order half-linear difference equations, Comput. Math. Appl. 42 (2001), 453-464.10.1016/S0898-1221(01)00169-9
  8. [8] DOˇSL´Y, O.-ˇREH´AK, P.: Half-linear Differential Equations. North-Holland Math. Stud., Vol. 202, Elsevier, Amsterdam, 2005.
  9. [9] ERBE, L. H.-PETERSON, A. C.: Some recent results in linear and nonlinear oscillation, Dynam. Systems Appl. 13 (2004), 381-395.
  10. [10] ERBE, L. H.-KONG, L.-KONG, Q.: A telescoping principle for oscillation of second order differential equations on time scale, Rocky Mountain J. Math. 36 (2006), 149-181.10.1216/rmjm/1181069493
  11. [11] HARTMAN, P.: Ordinary Differential Equations. John Wiley, New York, 1973.
  12. [12] KONG, Q.-ZETTL, A.: Interval oscillation conditions for difference equations, SIAM J. Math. Anal. 26 (1995), 1047-1060.10.1137/S0036141093251286
  13. [13] KWONG, M. K.-ZETTL, A.: Integral inequalities and second order linear oscillation, J. Differential Equations 45 (1982), 16-23.10.1016/0022-0396(82)90052-3
  14. [14] ˇREH´AK, P.: Oscillation criteria for second order half-linear difference equations, J. Difference Equ. Appl. 7 (2001), 483-505.10.1080/10236190108808284
  15. [15] ˇREH´AK, P.: Half-linear dynamic equations on time scales: IVP and oscillatory properties, Nonlinear Funct. Anal. Appl. 7 (2002), 361-404.
  16. [16] ˇREH´AK, P.: Comparison theorems and strong oscillation in the half-linear discrete oscillation theory, Rocky Mountain J. Math. 33 (2003), 333-352.
  17. [17] STURM, J. C. F.: M´emoire sur le ´equations differentielles lin´earies du second ordre, J. Math. Pures Appl. (9) 1 (1836), 106-186.
  18. [18] SWANSON, C. A.: Comparison and Oscillation Theory of Linear Differential Equations. Academic Press, New York, 1968.
DOI: https://doi.org/10.2478/v10127-009-0041-6 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 243 - 255
Published on: Nov 12, 2012
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2012 Jiří Vítovec, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons License.