Have a personal or library account? Click to login

Parametrization for some boundary value problems of interpolation type

Open Access
|Nov 2012

References

  1. [1] GOMA, I. A.: Method of successive approximations in a two-point boundary problem with parameter, Ukrainian Math. J. 29 (1977), No. 6, 594-599.
  2. [2] GOMA, I. A.: On the theory of the solutions of a boundary value problem with a parameter, Azerba˘ıdˇzan. Gos. Univ. Uˇcen. Zap. Ser. Fiz.-Mat. Nauk 1 (1976), 11-16.
  3. [3] HOSABEKOV, O.: Sufficient conditions for the convergence of the Newton-Kantoroviˇc method for a boundary value problem with a parameter, Dokl. Akad. Nauk Tadˇzik. SSR
  4. 16 (1973), No. 8, 14-17.
  5. [4] KURPEL’, N. S.-MARUSJAK, A. G.: A multipoint boundary value problem for differential equations with parameters, Ukrain. Mat. Zh. 32 (1980), No. 2, 223-226. (In Russian)
  6. [5] LUCHKA, A. YU.: Application of iterative processes to boundary value problems for differentia equations with parameters, Dokl. Akad. Nauk Ukr., Ser. A 1989 (1989), No. 10, 22-27.
  7. [6] LUCHKA, A. YU.: Projection-Iteration Methods for the Solution of Differential and Integral Equations. (Proektsionno-Iterativnye Metody Resheniya Differentsial’nykh i Integral’nykh Uravnenij.), Naukova Dumka, Kiev, 1980.
  8. [7] AKHMEDOV, K. T.-SVARICHEVSKAYA, N. A.-YAGUBOV, M. A.: Approximate solution of a two-point boundary value problem with a prameter by the method of averaging functional corrections, Dokl. Akad. Nauk Azerbaidzhana 29 (1973), No. 8, 3-7.
  9. [8] LUCHKA, A. YU.: The Method of Averaging Functional Corrections. Theory and Applications. Translated from the Russian by Scripta Technica, Inc., Academic Press, New York, 1965.
  10. [9] LUCHKA, A. YU.-ZAKHARIICHENKO, YU. O.: Investigation of systems of differential equations with parameters under impulse conditions and with restrictions, Neliniini Kolyvannya 3 (2000), No. 2, 218-225.
  11. [10] SAMOILENKO, A. M.-LUCHKA, A. YU.-LISTOPADOVA, V. V.: Application of iterative processes to a boundary value problem for a system of differential equations with impulse action and with parameters, Dokl. Akad. Nauk Ukr. 1994 (1994), No. 2, 15-20.
  12. [11] LUCHKA, A. YU.: Projection-Iteration Methods. (Proektsionno-iterativnye metody). Naukova Dumka, Kiev, 1993.
  13. [12] GAINES, R. E.-MAWHIN, J. L.: Coincidence Degree, and Nonlinear Differential Equations. Lecture Notes in Math., Vol. 568, Springer-Verlag, Berlin, 1977.10.1007/BFb0089537
  14. [13] FEˇCKAN, M.: Parametrized singular boundary value problems, J. Math. Anal. Appl. 188 (1994), 417-425.10.1006/jmaa.1994.1435
  15. [14] FEˇCKAN, M.: Parametrized singularly perturbed boundary value problems, J. Math. Anal. Appl. 188 (1994), 426-435.10.1006/jmaa.1994.1436
  16. [15] KELLER, H. B.: Numerical Methods for Two-Point Boundary-Value Problems. Dover Publ., Inc., New York, 1992.
  17. [16] ASCHER, U. M.-MATTHEIJ, R. M. M.-RUSSELL, R. D.: Numerical Solution of Boundary Value Problems for Ordinary differential Equations. in: Classics Appl. Math., Vol. 13, SIAM, Philadelphia, 1995.
  18. [17] ABRAMOV, A. A.-UL’YANOVA, V. I.-YUKHNO, L. F.: A method for solving the multiparameter eigenvalue problem for certain systems of differential equations, Comput. Math. Math. Phys. 40 (2000), 18-26.
  19. [18] SAMOILENKO, A. M.-RONTO, N. I.: Numerical-analytic Methods in the Theory of Boundary Value Problems for Ordinary Differential Equations. Naukova Dumka, Kiev, 1992.
  20. [19] RONT´ O, M.: On numerical-analytic method for BVPs with parameters, Publ. Univ. Miskolc Ser. D, Nat. Sci., Math. 36 (1996), 125-132.
  21. [20] RONT´ O, M.: On some existence results for parametrized boundary value problems, Publ. Univ. Miskolc Ser. D Nat. Sci. Math. 37 (1997), 95-103.
  22. [21] RONTO, M.-SAMOILENKO, A. M.: Numerical-Analytic Methods in the Theory of Boundary-Value Problems. World Scientific Publishing Co. Inc., River Edge, NJ, 2000.10.1142/3962
  23. [22] RONTO, A.-RONT´ O, M.: On the investigation of some boundary value problems with non-linear conditions, Math. Notes (Miskolc) 1 (2000), 43-55.10.18514/MMN.2000.17
  24. [23] RONTO, A.-RONT´ O, M.: A note on the numerical-analytic method for nonlinear twopoint boundary-value problems, Nonlinear Oscil. 4 (2001), 112-128.
  25. [24] RONT´ O, M.: On non-linear boundary value problems containing parameters, Arch. Math. (Brno) 36 (2000), 585-593.
  26. [25] RONT´ O, M.: On the investigation of parametrized non-linear boundary value problems, in: Proc. of the 3rd World Congress of Nonlinear Analysts, Part 7, Catania, 2000, Nonlinear Anal., Vol. 47, 2001, pp. 4409-4420.10.1016/S0362-546X(01)00555-7
  27. [26] RONT´ O, M.-SHCHOBAK, N.: On the numerical-analytic investigation of parametrized problems with nonlinear boundary conditions, Nonlinear Oscil. 6 (2003), 482-510.
  28. [27] RONTO, M.-SHCHOBAK, N.: On parametrized problems with non-linear boundary conditions, in: Proc. of the 7th Colloq. on the Qualitative Theory of Differential Equations, No. 20, pp. 25 (electronic), Proc. Colloq. Qual. Theory Differ. Equ., Vol. 7, Electron. J. Qual. Theory Differ. Equ., Szeged, 2004.
  29. [28] RONTO, A. N.-RONTO, M.-SHCHOBAK, N. M.: On the parametrization of threepoint nonlinear boundary value problems, Nonlinear Oscil. (7) (2004), 384-402.10.1007/s11072-005-0019-5
DOI: https://doi.org/10.2478/v10127-009-0040-7 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 229 - 242
Published on: Nov 12, 2012
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2012 Miklós Rontó, Natalia Shchobak, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons License.