References
- [1] CODDINGTON, E. A.-LEVINSON, N.: Theory of Ordinary Differential Equations. Izd. Inostr. Lit., Moskva, 1958. (In Russian)
- [2] IVASYSHEN, S. D.-MEDYNSKY, I. P.: The Cauchy problem for _ 2b parabolic systemswith a degeneration on the initial hyperplane, Mat. Metodi Fiz.-Mekh. Polya 46 (2003), No. 3, 15-24.
- [3] KALASHNIKOV, A. S.: Some properties of qualitative theory of nonlinear degenerateparabolic equations of the second order, Uspekhi Mat. Nauk 42 (1987), No. 2, 135-176.
- [4] LAVRENYUK, S. P.: An almost-everywhere solution to a mixed problem for one degeneratelinear evolution system, Sibirsk. Mat. Zh. 42 (2001), No. 1, 76-86.
- [5] LAVRENYUK, S. P.: Mixed problem for a strongly degenerate evolution system, Differ. Equ. 30 (1994), No. 8, 1303-1309.
- [6] LAVRENYUK, S. P.: Problem with modified initial conditions for an evolution systemdegenerating at the initial time, Dopov. Akad. Nauk Ukr. 1993 (1993), No. 6, 12-15.
- [7] LAVRENYUK, S.-PROTSAKH, N.: Boundary value problem for nonlinear ultraparabolicequation in unbounded with respect to time variable domain, Tatra Mt. Math. Publ. 38 (2007), 131-146.
- [8] LIONS, J. L.: Quelques M´ethodes de R´esolution des Probl´emes aux Limites Non Lin´eaires. Dunod, Gauthier-Villars, Paris, 1969. (In Russian Mir, Moskva, 1972.)
- [9] PROTSAKH, N.: Existence of solution for one degenerated evolution system, Visnik L’viv. Univ. Ser. Mekh. Mat. 54 (1999), 159-170.
- [10] PROTSAKH, N.: Internal smoothness of the solution of the mixed problem for the evolutionalsystem with degeneration, Visnik L’viv. Univ. Ser. Mekh. Mat. 56 (2000), 157-169.