[2] IVASYSHEN, S. D.-MEDYNSKY, I. P.: The Cauchy problem for _ 2b parabolic systemswith a degeneration on the initial hyperplane, Mat. Metodi Fiz.-Mekh. Polya 46 (2003), No. 3, 15-24.
[3] KALASHNIKOV, A. S.: Some properties of qualitative theory of nonlinear degenerateparabolic equations of the second order, Uspekhi Mat. Nauk 42 (1987), No. 2, 135-176.
[4] LAVRENYUK, S. P.: An almost-everywhere solution to a mixed problem for one degeneratelinear evolution system, Sibirsk. Mat. Zh. 42 (2001), No. 1, 76-86.
[6] LAVRENYUK, S. P.: Problem with modified initial conditions for an evolution systemdegenerating at the initial time, Dopov. Akad. Nauk Ukr. 1993 (1993), No. 6, 12-15.
[7] LAVRENYUK, S.-PROTSAKH, N.: Boundary value problem for nonlinear ultraparabolicequation in unbounded with respect to time variable domain, Tatra Mt. Math. Publ. 38 (2007), 131-146.
[8] LIONS, J. L.: Quelques M´ethodes de R´esolution des Probl´emes aux Limites Non Lin´eaires. Dunod, Gauthier-Villars, Paris, 1969. (In Russian Mir, Moskva, 1972.)
[10] PROTSAKH, N.: Internal smoothness of the solution of the mixed problem for the evolutionalsystem with degeneration, Visnik L’viv. Univ. Ser. Mekh. Mat. 56 (2000), 157-169.