Have a personal or library account? Click to login
On the oscillation of the solutions to delay and difference equations Cover

On the oscillation of the solutions to delay and difference equations

Open Access
|Nov 2012

References

  1. [1] CHATZARAKIS, G. E.-KOPLATADZE, R.-STAVROULAKIS, I. P.: Oscillation criteria of first order linear difference equations with delay argument, Nonlinear Anal. 68 (2008), 994-1005.10.1016/j.na.2006.11.055
  2. [2] CHATZARAKIS, G. E.-KOPLATADZE, R.-STAVROULAKIS, I. P.: Optimal oscillation criteria for the first order difference equations with delay argument, Pacific J. Math. 235 (2008), 15-33.10.2140/pjm.2008.235.15
  3. [3] CHATZARAKIS, G. E.-PHILOS, CH. G.-STAVROULAKIS, I. P.: On the oscillation of the solutions to linear difference equations with variable delay, Electron. J. Differential Equations 2008 (2008), No. 4, 1-15.
  4. [4] CHATZARAKIS,G. E.-PHILOS, CH. G.-STAVROULAKIS, I. P.: An oscillation criterion for linear difference equations with general delay argument, Port. Math. (to appear).
  5. [5] CHATZARAKIS, G. E.-STAVROULAKIS, I. P.: Oscillations of first order linear delay difference equations, Austral. J. Math. Anal. Appl. 3 (2006), No. 1, Art. 14, pp. 11.
  6. [6] CHEN, M. P.-YU, Y. S.: Oscillations of delay difference equations with variable coefficients, in: Proc. of the 1st Internat. Conference on Difference Equations (S. N. Elaydi et al., eds.), Trinity Univ., San Antonio, TX, USA, May 25-28, 1994, Gordon and Breach, London, 1995, pp. 105-114.
  7. [7] CHENG, S. S.-ZHANG, B. G.: Qualitative theory of partial difference equations (I): Oscillation of nonlinear partial difference equations, Tamkang J. Math. 25 (1994), 279-298.10.5556/j.tkjm.25.1994.4455
  8. [8] CHENG, S. S.-LIU, S. T.-ZHANG, G.: A multivariate oscillation theorem, Fasc. Math. 30 (1999), 15-22.
  9. [9] CHENG, S. S.-XI, S. L.-ZHANG, B. G.: Qualitative theory of partial difference equations (II): Oscillation criteria for direct control system in several variables, Tamkang J. Math. 26 (1995), 65-79.10.5556/j.tkjm.26.1995.4380
  10. [10] CHENG, S. S.-ZHANG, G.: “Virus” in several discrete oscillation theorems, Appl. Math. Lett. 13 (2000), 9-13.10.1016/S0893-9659(99)00178-0
  11. [11] DIBLIK, J.: Positive and oscillating solutions of differential equations with delay in critical case, J. Comput. Appl. Math. 88 (1998), 185-202.10.1016/S0377-0427(97)00217-3
  12. [12] DOMSHLAK, Y.: A discrete analogue of the Sturm comparison theorem for nonsymmetric equations, Dokl. Akad. Nauk Azerbaidzhana 37 (1981), 12-15. (In Russian)
  13. [13] DOMSHLAK, Y.: Sturm’s Comparison Method in the Investigation of Behavior of the Solutions of Operator Differential Equations, “Elm”, Baku, USSR, 1986. (In Russian)
  14. [14] DOMSHLAK, Y.: Oscillatory properties of linear difference equations with continuous time, Differential Equations Dynam. Systems 4 (1993), 311-324.
  15. [15] DOMSHLAK, Y.: Sturmian comparison method in oscillation study for discrete difference equations, I, Differential Integral Equations 7 (1994), 571-582.
  16. [16] DOMSHLAK, Y.: On oscillation properties of delay differencial equations with oscillating coefficients, Funct. Differ. Equ. 2 (1994), 59-68.
  17. [17] DOMSHLAK, Y.: Delay-difference equations with periodic coefficients: sharp results in oscillation theory, Math. Inequal. Appl. 1 (1998), 403-422.
  18. [18] DOMSHLAK, Y.:What should be a discrete version of the Chanturia-Koplatadze lemma? Funct. Differ. Equ. 6 (1999), 299-304.
  19. [19] DOMSHLAK, Y.: Riccati difference Equations with almost periodic coefficients in the critical state, Dynam. Systems Appl. 8 (1999), 389-399.
  20. [20] DOMSHLAK, Y.: The Riccati difference equations near “extremal” critical states, J. Difference Equ. Appl. 6 (2000), 387-416.10.1080/10236190008808237
  21. [21] DOMSHLAK, Y.-ALIEV, A.: On oscillatory properties of the first order differential equations with one or two retarded arguments, Hiroshima Math. J. 18 (1998), 31-46.
  22. [22] DOMSHLAK, Y.-STAVROULAKIS, I. P.: Oscillations of first-order delay differential equations in a critical state, Appl. Anal. 61 (1996), 359-377.10.1080/00036819608840464
  23. [23] ELBERT, A.-STAVROULAKIS, I. P.: Oscillations of first order differential equations with deviating arguments, Univ. of Ioannina T.R. No. 172, 1990, in: Recent Trends in Differential Equations (R. P. Agarwal, ed.), World Sci. Ser. Appl. Anal.,Vol. 1, World Sci. Publishing Co., Singapore, 1992, pp. 163-178.
  24. [24] ELBERT, A.-STAVROULAKIS, I. P.: Oscillation and nonoscillation criteria for delay differential equations, Proc. Amer. Math. Soc. 123 (1995), 1503-1510.10.1090/S0002-9939-1995-1242082-1
  25. [25] ERBE, L. H.-KONG, Q.-ZHANG, B. G.: Oscillation Theory for Functional Differential Equations. Marcel Dekker, New York, 1995.
  26. [26] ERBE, L. H.-ZHANG, B. G.: Oscillation of first order linear differential equations with deviating arguments, Differential Integral Equations 1 (1988), 305-314.
  27. [27] ERBE, L. H.-ZHANG, B. G.: Oscillation of discrete analogues of delay equations, Differential Integral Equations 2 (1989), 300-309.10.57262/die/1372428799
  28. [28] FUKAGAI, N.-KUSANO, T.: Oscillation theory of first order functional differential equations with deviating arguments, Ann. Mat. Pura Appl. (4) 136 (1984), 95-117.10.1007/BF01773379
  29. [29] GOPALSAMY, K.: Stability and Oscillations in Delay Differential Equations of Population Dynamics. Math. Appl., Vol. 74, Kluwer Acad. Publ., Dordrecht, 1992.10.1007/978-94-015-7920-9
  30. [30] GYORI, I.-LADAS, G.: Oscillation Theory of Delay Differential Equations with Applications. Clarendon Press, Oxford, 1991.
  31. [31] HALE, J. K.: Theory of Functional Differential Equations (2nd ed.), Appl. Math. Sci., Vol. 3, Springer, New York, 1997.
  32. [32] IVANOV, A. F.-SHEVELO, V. N.: Oscillation and asymptotic behavior of solutions of first order differential equations, Ukra¨ın. Math. Zh. 33 (1981), 745-751, 859.
  33. [33] JAROˇS, J.-STAVROULAKIS, I. P.: Necessary and sufficient conditions for oscillations of difference equations with several delays, Util. Math. 45 (1994), 187-195.
  34. [34] JAROˇS, J.-STAVROULAKIS, I. P.: Oscillation tests for delay equations, Rocky Mountain J. Math. 29 (1999), 139-145.
  35. [35] JIAN, C.: Oscillation of linear differential equations with deviating argument, Math. Practice Theory 1 (1991), 32-41. (In Chinese)
  36. [36] KON, M.-SFICAS, Y. G.-STAVROULAKIS, I. P.: Oscillation criteria for delay equations, Proc. Amer. Math. Soc. 128 (2000), 2989-2997.10.1090/S0002-9939-00-05530-1
  37. [37] KOPLATADZE, R. G.-CHANTURIJA, T. A.: On the oscillatory and monotonic solutions of first order differential equations with deviating arguments, Differentsial’nye Uravneniya 18 (1982), 1463-1465.
  38. [38] KOPLATADZE, R. G.-KVINIKADZE, G.: On the oscillation of solutions of first order delay differential inequalities and equations, Georgian Math. J. 1 (1994), 675-685.10.1007/BF02254685
  39. [39] KOZAKIEWICZ, E.: Conditions for the absence of positive solutions of first order differential inequalities with deviating agruments, in: Proc. of the 4th Internat. Colloq. On Differ. Equ. (D. Bainov, et al., eds.), Plovdiv, Bulgaria, August 18-22, 1993, VSP, Utrecht, 1994, pp. 157-161.10.1515/9783112318874-017
  40. [40] KULENOVIC, M. R.-GRAMMATIKOPOULOS, M. K.: First order functional differential inequalities with oscillating coefficients, Nonlinear Anal. 8 (1984), 1043-1054.10.1016/0362-546X(84)90098-1
  41. [41] KWONG, M. K.: Oscillation of first order delay equations, J. Math. Anal. Appl. 156 (1991), 374-286.10.1016/0022-247X(91)90396-H
  42. [42] LADAS, G.: Sharp conditions for oscillations caused by delay, Appl. Anal. 9 (1979), 93-98.10.1080/00036817908839256
  43. [43] LADAS, G.: Recent developments in the oscillation of delay difference equations, in: Proc. Int. Conf. on Differential Equations: Stability and Control, Colorado Springs, CO, USA, 1989, Lect. Notes Pure Appl. Math. 127, Dekker, New York, 1990, pp. 321-332.
  44. [44] LADAS, G.-LASKHMIKANTHAM, V.-PAPADAKIS, J. S.: Oscillations of higherorder retarded differential equations generated by retarded argument, Delay Functional Diff. Equ. Appl., Conf. Park City, Utah, 1972, Academic Press, New York, 1972, pp. 219-231.10.1016/B978-0-12-627250-5.50013-7
  45. [45] LADAS, G.-PAKULA, L.-WANG, Z. C.: Necessary and sufficient conditions for the oscillation of difference equations, Panam. Math. J. 2 (1992), 17-26.
  46. [46] LADAS, G.-PHILOS, CH. G.-SFICAS, Y. G.: Sharp conditions for the oscillation of delay difference equations, J. Appl. Math. Simulation 2 (1989), 101-112.10.1155/S1048953389000080
  47. [47] LADAS, G.-QIAN, C.-YAN, J.: A comparison result for the oscillation of delay differential equations, Proc. Amer. Math. Soc. 114 (1992), 939-946.10.1090/S0002-9939-1992-1052575-5
  48. [48] LADAS, G.-SFICAS, Y. G.-STAVROULAKIS, I. P.: Functional-differential inequalities and equations with oscillating coefficients, in: Proc. Internat. Conf.-Trends in Theory and Practice of Nonlinear Differential Equations, Arlington, Texas, USA, 1982, Lecture Notes in Pure and Appl. Math., Vol. 90, Marcel Dekker, New York, 1984, pp. 277-284.
  49. [49] LADDE, G. S.: Oscillations caused by retarded perturbations of first order linear ordinary differential equations, Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Natur. 63 (1977), 351-359.
  50. [50] LADDE, G. S.: Class of functional equations with applications, Nonlinear Anal. 2 (1978), 259-261.10.1016/0362-546X(78)90073-1
  51. [51] LADDE, G. S.: Stability and oscillation in single-species processes with past memory, Internat. J. Systems Sci. 10 (1979), 621-647.10.1080/00207727908941607
  52. [52] LADDE, G. S.-LAKSHMIKANTHAM, V.-ZHANG, B. G.: Oscillation Theory of Differential Equations with Deviating Arguments, Marcel Dekker, New York, 1987.
  53. [53] LALLI, B.-ZHANG, B. G.: Oscillation of difference equations, Colloq. Math. 65 (1993), 25-32.10.4064/cm-65-1-25-32
  54. [54] LI, B.: Oscillations of delay differential equations with variable coefficients, J. Math. Anal. Appl. 192 (1995), 312-321.10.1006/jmaa.1995.1173
  55. [55] LI, B.: Oscillations of first order delay differential equations, Proc. Amer. Math. Soc. 124 (1996), 3729-3737.10.1090/S0002-9939-96-03674-X
  56. [56] LUO, Z.-SHEN, J. H.: New results for oscillation of delay difference equations, Comput. Math. Appl. 41 (2001), 553-561.10.1016/S0898-1221(00)00298-4
  57. [57] LUO, Z.-SHEN, J. H.: New oscillation criteria for delay difference equations, J. Math. Anal. Appl. 264 (2001), 85-95.10.1006/jmaa.2001.7641
  58. [58] MYSHKIS, A. D.: Linear homogeneous differential equations of first order with deviating arguments, Uspekhi Mat. Nauk 5 (1950), 160-162. (In Russian)
  59. [59] PHILOS, CH. G.-SFICAS, Y. G.: An oscillation criterion for first-order linear delay differential equations, Canad. Math. Bull. 41 (1998), 207-213.10.4153/CMB-1998-030-3
  60. [60] SFICAS, Y. G.-STAVROULAKIS, I. P.: Oscillation criteria for first-order delay equations, Bull. London Math. Soc. 35 (2003), 239-246.10.1112/S0024609302001662
  61. [61] SHEN, J. H.-LUO, Z.: Some oscillation criteria for difference equations, Comput. Math. Appl. 40 (2000), 713-719.10.1016/S0898-1221(00)00190-5
  62. [62] SHEN, J. H.-STAVROULAKIS, I. P.: Oscillation criteria for delay difference equations, Electron. J. Differential Equations 2001 (2001), No. 10, 1-15.
  63. [63] STAVROULAKIS, I. P.: Oscillations of delay difference equations, Comput. Math. Appl. 29 (1995), 83-88.10.1016/0898-1221(95)00020-Y
  64. [64] STAVROULAKIS, I. P.: Oscillation criteria for first order delay difference equations, Mediterr. J. Math. 1 (2004), 231-240.10.1007/s00009-004-0013-7
  65. [65] TANG, X. H.: Oscillations of delay difference equations with variable coefficients, J. Central So. Univ. Technology 29 (1998), 287-288. (In Chinese)
  66. [66] TANG, X. H.: Oscillation of delay differential equations with variable coefficients, J. Math. Study 31 (1998), 290-293.
  67. [67] TANG, X. H.-CHENG, S. S.: An oscillation criterion for linear difference equations with oscillating coefficients, J. Comput. Appl. Math. 132 (2001), 319-329.10.1016/S0377-0427(00)00436-2
  68. [68] TANG, X. H.-YU, J. S.: Oscillation of delay difference equations, Comput. Math. Appl. 37 (1999), 11-20.10.1016/S0898-1221(99)00083-8
  69. [69] TANG, X. H.-YU, J. S.: A further result on the oscillation of delay difference equations, Comput. Math. Appl. 38 (1999), 229-237.10.1016/S0898-1221(99)00301-6
  70. [70] TANG, X. H.-YU, J. S.: Oscillations of delay difference equations in a critical state, Appl. Math. Lett. 13 (2000), 9-15.10.1016/S0893-9659(99)00158-5
  71. [71] TANG, X. H.-YU, J. S.: Oscillation of delay difference equations, Hokkaido Math. J. 29 (2000), 213-228.10.14492/hokmj/1350912965
  72. [72] TANG, X. H.-YU, J. S.: Oscillation of first order delay differential equations, J. Math. Anal. Appl. 248 (2000), 247-259.10.1006/jmaa.2000.6894
  73. [73] TANG, X. H.-YU, J. S.: Oscillations of first order delay differential equations in a critical state, Mathematica Applicata 13 (2000), 75-79.
  74. [74] TANG, X. H.-YU, J. S.: Oscillation of first order delay differential equations with oscillating coefficients, Appl. Math., J. Chin. Univ. 15 (2000), 252-258.
  75. [75] TANG, X. H.-YU, J. S.: New oscillation criteria for delay difference equations, Comput. Math. Appl. 42 (2001), 1319-1330.10.1016/S0898-1221(01)00243-7
  76. [76] TANG, X. H.-YU, J. S.-WANG, Z. C.: Comparison theorems of oscillation of first order delay differential equations in a critical state with applications, Ke Xue Tongbao 44 (1999), 26-30.
  77. [77] TOMARAS, A.: Oscillatory behaviour of an equation arising from an industrial problem, Bull. Austral. Math. Soc. 13 (1975), 255-260.10.1017/S0004972700024448
  78. [78] TOMARAS, A.: Oscillations of a first order functional differential equation, Bull. Austral. Math. Soc. 17 (1977), 91-95.10.1017/S0004972700025491
  79. [79] TOMARAS, A.: Oscillatory behaviour of first order delay differential equations, Bull. Austral. Math. Soc. 19 (1978), 183-190.10.1017/S0004972700008662
  80. [80] WANG, Z. C.-STAVROULAKIS, I. P.-QIAN, X. Z.: A Survey on the oscillation of solutions of first order linear differential equations with deviating arguments, Appl. Math. E-Notes 2 (2002), 171-191.
  81. [81] YAN, W.-YAN, J.: Comparison and oscillation results for delay difference equations with oscillating coefficients, Int. J. Math. Math. Sci. 19 (1996), 171-176.10.1155/S0161171296000245
  82. [82] YU, J. S.-TANG, X. H.: Comparison theorems in delay differential equations in a critical state and application, Proc. London Math. Soc. (3) 63 (2001), 188-204.10.1112/S0024610700001599
  83. [83] YU, J. S.-WANG, Z. C.: Some further results on oscillation of neutral differential equations, Bull. Austral. Math. Soc. 46 (1992), 149-157.10.1017/S0004972700011758
  84. [84] YU, J. S.-WANG, Z. C.-ZHANG, B. G.-QIAN, X. Z.: Oscillations of differential equations with deviting arguments, Panam. Math. J. 2 (1992), 59-78.
  85. [85] YU, J. S.-ZHANG, B. G.-QIAN, X. Z.: Oscillations of delay difference equations with oscillating coefficients, J. Math. Anal. Appl. 177 (1993), 432-444.10.1006/jmaa.1993.1267
  86. [86] YU, J. S.-ZHANG, B. G.-WANG, Z. C.: Oscillation of delay difference equations, Appl. Anal. 53 (1994), 117-124.10.1080/00036819408840248
  87. [87] ZHANG, B. G.-LIU, S. T.-CHENG, S. S.: Oscillation of a class of delay partial difference equations, J. Difference Equ. Appl. 1 (1995), 215-226.10.1080/10236199508808022
  88. [88] ZHANG, B. G.-ZHOU, Y.: The semicycles of solutions of delay difference equations, Comput. Math. Appl. 38 (1999), 31-38.10.1016/S0898-1221(99)00235-7
  89. [89] ZHANG, B. G.-ZHOU, Y.: Comparison theorems and oscillation criteria for difference equations, J. Math. Anal. Appl. 247 (2000), 397-409.10.1006/jmaa.2000.6833
  90. [90] ZHOU, Y.-YU, Y. H.: On the oscillation of solutions of first order differential equations with deviating arguments, Acta Math. Appl. Sinica 15 (1999), 288-302.
DOI: https://doi.org/10.2478/v10127-009-0036-3 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 173 - 187
Published on: Nov 12, 2012
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2012 Khadija Niri, Ioannis P. Stavroulakis, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons License.