Have a personal or library account? Click to login

Homogenization of monotone type problems with uncertain data

Open Access
|Nov 2012

References

  1. [1] ALLAIRE, G.: Homogenization and two-scale convergence, SIAM J. Math. Anal. 23 (1992), 1482-1518.10.1137/0523084
  2. [2] BENSOUSSAN, A.-LIONS, J. L.-PAPANICOLAOU, G.: Asymptotic Analysis for Periodic Structures. Stud. Math. Appl., Vol. 5, North Holland, Amsterdam, 1978.
  3. [3] CHIAD`O PIAT, V.-DEFRANCESCHI, A.: Homogenization of monotone operators, Nonlinear Anal. 14 (1990), 717-732.10.1016/0362-546X(90)90102-M
  4. [4] FRANC˚U, J.: Monotone operators. A survey directed to applications to differential equations, Appl. Math. 35 (1990), 256-301.
  5. [5] DE GIORGI, E.-SPAGNOLO, S.: Sulla convergenza degli integrali dell’energia per operatori ellittici del secondo ordine, Boll. Un. Mat. Ital., IV. Ser. 8 (1973), 391-411.
  6. [6] HLAV´A ˇCEK, I.-CHLEBOUN, J.-BABUˇSKA, I.: Uncertain Input Data Problems and the Worst Scenario Method. Appl. Math. Mech. (North-Holland), Vol. 46, Elsevier, Amsterdam, 2004.
  7. [7] MURAT, F.-TARTAR, L.: H-convergence, Topics in Mathematical Modelling of Composite Materials. Progr. Nonlinear Differential Equations Appl., Vol. 31, Birkhauser, Boston, MA, 1997.10.1007/978-1-4612-2032-9_3
  8. [8] NECHV´ATAL, L.: Worst scenario method in homogenization, Appl. Math. 51 (2006), 263-294.10.1007/s10492-006-0015-9
DOI: https://doi.org/10.2478/v10127-009-0035-4 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 163 - 171
Published on: Nov 12, 2012
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 times per year

© 2012 Luděk Nechvátal, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons License.