Have a personal or library account? Click to login

A note on asymptotic estimate for difference equation with several proportional delays

Open Access
|Nov 2012

References

  1. [1] BELLEN, A.-ZENNARO, M.: Numerical Methods for Delay Differential Equations. Clarendon Press, Oxford, 2003.10.1093/acprof:oso/9780198506546.001.0001
  2. [2] ˇCERM´AK, J.: A change of variables in the asymptotic theory of differential equations with unbounded delays, J. Comput. Appl. Math. 143 (2002), 81-93.10.1016/S0377-0427(01)00500-3
  3. [3] ˇCERM´AK, J.: The asymptotics of solutions for a class of delay differential equations, Rocky Mountain J. Math. 33 (2003), 775-786.
  4. [4] ˇCERM´AK, J.: On the differential equation with power coefficients and proportional delays, Tatra Mt. Math. Publ. 38 (2007), 57-69.
  5. [5] FELDSTEIN, A.: Discretization Methods for Retarded Ordinary Differential Equation. PhD. Thesis, Dept. of Mathematics, UCLA, Los Angeles, 1964.
  6. [6] GY¨ORI, I.-PITUK, M.: Comparison theorems and asymptotic equilibrium for delay differential and difference equations, Dynam. Systems Appl. 5 (1996), 277-302.
  7. [7] ISERLES, A.: On the generalized pantograph functional-differential equation, European J. Appl. Math. 4 (1993), 1-38.10.1017/S0956792500000966
  8. [8] ISERLES, A.: Exact and discretized stability of the pantograph equation, Appl. Numer. Math. 24 (1997), 295-308.10.1016/S0168-9274(97)00027-5
  9. [9] KUNDR´AT, P.: Asymptotic properties of the discretized pantograph equation, Stud. Univ. Babe,s-Bolyai Math. L (2005), 77-84.
  10. [10] LI, D.-LIU, M. Z.: Runge-Kutta methods for the multi-pantograph delay equation, Appl. Math. Comput. 163 (2005), 383-395.
  11. [11] LIU, Y.: Asymptotic behaviour of functional-differential equations with proportional time delays, European J. Appl. Math. 7, no. 1 (1996), 11-30.
  12. [12] LIU, Y.: Numerical investigation of the pantograph equation, Appl. Numer. Math. 24 (1997), 309-317.10.1016/S0168-9274(97)00028-7
  13. [13] MAKAY, G.-TERJ´EKI, J.: On the asymptotic behaviour of the pantograph equations, Electron. J. Qual. Theory Differ. Equ. 2 (1998), 1-12.10.14232/ejqtde.1998.1.2
DOI: https://doi.org/10.2478/v10127-009-0030-9 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 109 - 114
Published on: Nov 12, 2012
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 times per year

© 2012 Petr Kundrát, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons License.