Have a personal or library account? Click to login
On a non-homogeneous difference equation from probability theory Cover

On a non-homogeneous difference equation from probability theory

Open Access
|Nov 2012

References

  1. [1] ABRAMOWITZ, M.-STEGUN, I. A.: Handbook of Mathematical Functions with Formulas,Graphs, and Mathematical Tables. Dover, New York, 1965.10.1063/1.3047921
  2. [2] ANISHCHENKO, V. S.-ASTAKHOV, V.-NEIMAN, A.-VADIVASOVA, T.-SCHIMANSKY- GEIER, L.: Nonlinear Dynamics of Chaotic and Stochastic Systems (2nd ed.), Springer-Verlag, Berlin, 2007.
  3. [3] BATCHELDER, P. M.: An Introduction to Linear Difference Equations. Dover, New York, 1967.
  4. [4] COX, D. R.-MILLER, H. D.: The Theory of Stochastic Processes. Methuen and Co. Ltd. X, London, 1965.
  5. [5] ERD´ELYI, A.-MAGNUS, W.-OBERHETTINGER, F.-TRICOMI, F. G.: HigherTranscendental Functions. Vol. I. Bateman Manuscript Project XXVI, McGraw-Hill Book Co., New York, 1953.
  6. [6] FELLER, W.: An Introduction to Probability Theory and Its Applications, Vol. I (3rd ed.), Wiley, New York, 1968.
  7. [7] KONTOYIANNIS, I.-MEYN, S. P.: Large deviations asymptotics and the spectral theoryof multiplicatively regular Markov processes, Electron. J. Probab. 10 (2005), 61-123.10.1214/EJP.v10-231
  8. [8] LARRALDE, H.: A first passage time distribution for a discrete version of the Ornstein--Uhlenbeck process, J. Phys. A 37 (2004a), 3759-3767.10.1088/0305-4470/37/12/003
  9. [9] LARRALDE, H.: Statistical properties of a discrete version of the Ornstein-Uhlenbeckprocess, Phys. Rev. E (3) 69 (2004b), 027102-4.10.1103/PhysRevE.69.02710214995587
  10. [10] LEFEBVRE, M.: First passage problems for asymmetric Wiener processes, J. Appl. Probab. 43 (2006), 175-184.10.1239/jap/1143936251
  11. [11] LEFEBVRE, M.-GUILBAULT, J.-L.: First hitting place probabilities for a discrete versionof the Ornstein-Uhlenbeck process (2008), (submitted for publication).10.1155/2009/909835
  12. [12] MILSTEIN, G. N.-SCHOENMAKERS, J. G. M.-SPOKOINY, V.: Forward and reverserepresentations for Markov chains, Stochastic Process. Appl. 117 (2007), 1052-1075.10.1016/j.spa.2006.12.002
  13. [13] RENSHAW, E.: The discrete Uhlenbeck-Ornstein process, J. Appl. Probab. 24 (1987), 908-917.10.1017/S002190020011678X
  14. [14] SPROTT, J. C.: Chaos and Time-Series Analysis. Oxford University Press, Oxford, 2003.
DOI: https://doi.org/10.2478/v10127-009-0027-4 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 81 - 90
Published on: Nov 12, 2012
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2012 Jean-Luc Guilbault, Mario Lefebvre, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons License.