Have a personal or library account? Click to login

Asymptotic properties of trinomial delay differential equations

Open Access
|Nov 2012

References

  1. [1] BARTUˇ SEK, M.-CECCHI, M.-DOˇSL´A, Z.-MARINI, M.: On nonoscillatory solutionsof third order nonlinear differential equations, Dynam. Systems Appl. 9 (2000), 483-499.
  2. [2] BELLMAN, R.: Stability Theory of Differential Equations. Internat. Ser. Pure Appl. Math., Vol. XIII, McGraw-Hill Book Company, New York, 1953.
  3. [3] CECCHI, M.-DOˇSL´A, Z.-MARINI, M.: On the third order differential equations withproperty A and B, J. Math. Anal. Appl. 231 (1999), 509-525.10.1006/jmaa.1998.6247
  4. [4] CECCHI, M.-MARINI, M.-VILLARI, G.: On the monotonicity property for a certainclass of second order differential equations, J. Differential Equations 82 (1989), 15-27.10.1016/0022-0396(89)90165-4
  5. [5] CHANTURIJA, T. A.-KIGURADZE, I. T.: Asymptotic Properties of NonautonomousOrdinary Differential Equations. Nauka, Moscow, 1990. (In Russian)
  6. [6] Dˇ ZURINA, J.: Asymptotic properties of the third order delay differential equations, Nonlinear Anal. 26 (1996), 33-39.10.1016/0362-546X(94)00239-E
  7. [7] DˇZURINA, J.: Asymptotic properties of third-order differential equations with deviatingargument, Czechoslovak Math. J. 44 (1994), 163-172.10.21136/CMJ.1994.128446
  8. [8] Dˇ ZURINA, J.: Comparison Theorems for Functional Differential Equations. EDIS, ˇ Zilina, 2003.
  9. [9] DˇZURINA, J.: Comparison theorems for nonlinear ODE’s, Math. Slovaca, 42 (1992), 299-315.
  10. [10] ERBE, L.: Existence of oscillatory solutions and asymptotic behavior for a class of thirdorder linear differential equation, Pacific J. Math. 64 (1976), 369-385.10.2140/pjm.1976.64.369
  11. [11] HARTMAN, P.: Ordinary Differential Equations. John Wiley & Sons, New York, 1964.
  12. [12] JONES, G. D.: An asymptotic property of solutions yʹʺ+ p(x)yʹ+ q(x)y = 0, Pacific J. Math. 47 (1973), 135-138.10.2140/pjm.1973.47.135
  13. [13] KIGURADZE, I. T.: On the oscillation of solutions of the equation d<sup>m</sup>u/dt<sup>m</sup> + a(t)|u|nsign u =0, Mat. Sb. 65 (1964), 172-187. (In Russian)
  14. [14] KUSANO, T.-NAITO, M.: Comparison theorems for functional differential equationswith deviating arguments, J. Math. Soc. Japan 3 (1981), 509-532.
  15. [15] KUSANO, T.-NAITO, M.-TANAKA, K.: Oscillatory and asymptotic behavior of solutionsof a class of linear ordinary differential equations, Proc. Roy. Soc. Edinburgh Sect. A 90 (1981), 25-40.10.1017/S0308210500015328
  16. [16] LACKOV´A, D.: The asymptotic properties of the solutions of n-th order neutral differentialequations, Arch. Math. (Brno) 39 (1981), 179-185.
  17. [17] LAZER, A.C.: The behavior of solutions of the differential equation yʹʺ+p(x)yʹ+q(x)y= 0, Pacific J. Math. 17 (1966), 435-466.10.2140/pjm.1966.17.435
  18. [18] MAHFOUD, W. E.: Comparison theorems for delay differential equations, Pacific J. Math. 83 (1979), 187-197.10.2140/pjm.1979.83.187
  19. [19] PARHI, N.-PADHI, S.: On asymptotic behaviour of delay differential equations of thirdorder, Nonlinear Anal. 34 (1998), 391-403.10.1016/S0362-546X(97)00600-7
  20. [20] ˇSKERL´IK, A.: Integral criteria of oscillation for the third order linear differential equations, Math. Slovaca 45 (1995), 403-412.
  21. [21] TRENCH, W. F.: Canonical forms and principal systems for general disconjugate equations, Trans. Amer. Math. Soc. 189 (1974), 319-327.10.1090/S0002-9947-1974-0330632-X
  22. [22] TRENCH, W. F.: Eventual disconjugacy of linear differential equation, Proc. Amer. Math. Soc. 83 (1983), 461-466.10.1090/S0002-9939-1983-0715867-7
DOI: https://doi.org/10.2478/v10127-009-0026-5 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 71 - 79
Published on: Nov 12, 2012
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 times per year

© 2012 Jozef Džurina, Renáta Kotorová, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons License.