Have a personal or library account? Click to login

Existence of asymptotically periodic solutions of scalar Volterra difference equations

Open Access
|Nov 2012

References

  1. [1] AGARWAL, R. P.: Difference Equations and Inequalities. Theory, Methods, and Applications (2nd ed.), in: Pure Appl. Math., Vol. 228, Marcel Dekker, Inc., New York, 2000.
  2. [2] AGARWAL, R. P.-POPENDA, J.: Periodic solutions of first order linear differenceequations, Math. Comput. Modelling 22 (1995), 11-19.10.1016/0895-7177(95)00096-K
  3. [3] ELAYDI, S. N.: An Introduction to Difference Equations (3rd ed.), Undergrad. Texts Math., Springer-Verlag, New York, 2005.
  4. [4] ELAYDI, S. N.-MURAKAMI, S.: Uniform asymptotic stability in linear Volterra differenceequations, J. Difference Equ. Appl. 3 (1998), 203-218.10.1080/10236199808808097
  5. [5] FURUMOCHI, T.: Periodic solutions of Volterra difference equations and attractivity, Nonlinear Anal. 47 (2001), 4013-4024.10.1016/S0362-546X(01)00520-X
  6. [6] FURUMOCHI, T.: Asymptotically periodic solutions of Volterra difference equations, Vietnam J. Math. 30 (2002), 537-550.
  7. [7] KOCI´C, V. L.-LADAS, G.: Global Behavior of Nonlinear Difference Equations of HigherOrder with Applications, in: Math. Appl., Vol. 256., Kluwer Acad. Publ., Dordrecht, 1993.10.1007/978-94-017-1703-8
  8. [8] MUSIELAK, J.: Wstep do Analizy Funkcjonalnej, PWN, Warszawa, 1976. (In Polish)
  9. [9] POPENDA, J.-SCHMEIDEL, E.: On the asymptotically periodic solution of some lineardifference equations, Arch. Math. (Brno) 35 (1999), 13-19.
  10. [10] POPENDA, J.-SCHMEIDEL, E.: Asymptotically periodic solution of some linear differenceequations, Facta Univ. Ser. Math. Inform. 14 (1999), 31-40.
DOI: https://doi.org/10.2478/v10127-009-0024-7 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 51 - 61
Published on: Nov 12, 2012
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 times per year

© 2012 Josef Diblík, Miroslava Růžičková, Ewa Schmeidel, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons License.