[5] ČERMÁK, J.: On the asymptotics of solutions of delay dynamic equations on time scales, Math. Comp. Modelling 46 (2007), 455-458.10.1016/j.mcm.2006.11.015
[7] DERFEL, G.: Functional-differential equations with compressed arguments and polynomialcoefficients: asymptotics of the solutions, J. Math. Anal. Appl. 193 (1995), 671-679.10.1006/jmaa.1995.1260
[8] DERFEL, G.-VOGL, F.: On the asymptotics of solutions of a class of linear functional--differential equations, European J. Appl. Math. 7 (1996), 511-518.10.1017/S0956792500002527
[9] DIBLÍK, J.: Asymptotic behaviour of solutions of linear differential equations with delay, Ann. Polon. Math. LVIII (1993), 131-137.10.4064/ap-58-2-131-137
[11] GYŐRI, I.-PITUK, M.: Comparison theorems and asymptotic equilibrium for delaydifferential and difference equations, Dynam. Systems Appl. 5 (1996) 277-302.
[17] MAKAY, G.-TERJÉKI, J.: On the asymptotic behavior of the pantograph equations, Electron. J. Qual. Theory Differ. Equ. 2 (1998), 1-12 (electronic).10.14232/ejqtde.1998.1.2
[18] OCKENDON, J. R.-TAYLER A. B.: The dynamics of a current collection system foran electric locomotive, Proc. Roy. Soc. London Ser. A. 322 (1971), 447-468.10.1098/rspa.1971.0078
[20] PANDOLFI, L.: Some observations on the asymptotic behaviors of the solutions of theequation xʹ(t) = a(t)x(λt) + b(t)x(t), λ > 0, J. Math. Anal. Appl. 67 (1979), 483-489.10.1016/0022-247X(79)90038-6