Have a personal or library account? Click to login
A note on measure extension problem of ℓ-group-valued measures Cover

A note on measure extension problem of ℓ-group-valued measures

Open Access
|Nov 2012

References

  1. [1] ALIPRANTIS, C. D.-BURKINSHAW, O.: Positive Operators. Academic Press, Orlando, 1985.
  2. [2] BERNAU, S. J.: Unique representation of Archimedaen lattice groups and normal Archimedean lattice rings, Proc. London Math. Soc. (3) 15 (1965), 599-631.10.1112/plms/s3-15.1.599
  3. [3] KHURANA, S. S.: Lattice-valued Borel measures, Rocky Mountain J. Math. 6 (1976), 377-382.10.1216/RMJ-1976-6-2-377
  4. [4] RIEČAN, B.: On measures and integrals with values in ordered groups, Math. Slovaca 33 (1983), 153-163.
  5. [5] RIEČAN, B.-NEUBRUNN, T.: Integral, Measure and Ordering. Math. Appl., Vol. 411, Kluwer Acad. Publ., Dordrecht, 1997.10.1007/978-94-015-8919-2
  6. [6] RIEČAN, B.: Carath´eodory measurability revisited, Tatra Mt. Math. Publ. 34 (2006), 321-332.
  7. [7] WRIGHT J. D. M.: Stone-algebra-valued measures and integrals, Proc. London Math. Soc. 19 (1969), 107-122.10.1112/plms/s3-19.1.107
  8. [8] WRIGHTJ. D. M.: The measure problem for vector lattices, Ann. Inst. Fourier (Grenoble) 21 (1971), 65-85.10.5802/aif.393
DOI: https://doi.org/10.2478/v10127-009-0017-6 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 187 - 189
Published on: Nov 12, 2012
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2012 Surjit Singh Khurana, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons License.