Have a personal or library account? Click to login
Set of continuity points of functions with values in generalized metric spaces Cover

Set of continuity points of functions with values in generalized metric spaces

Open Access
|Nov 2012

References

  1. [AAC] ALLECHE, B.-ARHANGEL’SKII, A. V.-CALBRIX, J.: Weak developments and metrization, Topology Appl. 100 (2000), 23-38.10.1016/S0166-8641(98)00135-7
  2. [Bo] BOLSTEIN, R.: Set of points of discontinuity, Proc. Amer. Math. Soc. 38 (1973), 193-197.10.1090/S0002-9939-1973-0312457-9
  3. [BLL] BURKE, V.-LUTZER, D.-LEVI, S.: Functional characterizations of certain p-spaces, Topology Appl. 20 (1985), 161-165.10.1016/0166-8641(85)90076-8
  4. [CA] CALBRIX, J.-ALLECHE, B.: Multifunctions and ˇCech-complete spaces, in: Proc. Of the 8th Prague Topological Symposium, Prague, Czech Republic, August 18-24, 1996 (P. Simon, ed.), Topology Atlas, Prague, 1997, pp. 30-36.
  5. [D] DOBOˇS, J.: On the set of points of discontinuity for functions with closed graphs, ˇCas. pˇest. mat. 110 (1985), 60-68.
  6. [E] ENGELKING, R.: General Topology. PWN, Warsaw, 1977.
  7. [Gr] GRUENHAGE, G.: Generalized metric spaces, in: Handbook of Set-Theoretic Topology (K. Kunen, J. Vaughan, eds.), North Holland, Amsterdam, 1984, pp. 423-501.10.1016/B978-0-444-86580-9.50013-6
  8. [GL] GRUENHAGE, G.-LUTZER, D.: Baire and Volterra spaces, Proc. Amer. Math. Soc. 128 (2000), 3115-3124.10.1090/S0002-9939-00-05346-6
  9. [GP1] GAULD, D. B.-PIOTROWSKI, Z.: On Volterra spaces, Far East J. Math. Sci. 1 (1993), 209-214.
  10. [GP2] GAULD, D. B.-GREENWOOD, S.-PIOTROWSKI, Z.: On Volterra spaces II, Annals New York Academy of Sciences 806 (1996), 169-173.10.1111/j.1749-6632.1996.tb49167.x
  11. [GP3] GAULD, D. B.-GREENWOOD, S.-PIOTROWSKI, Z.: On Volterra spaces III, Topology Proc. 23 (1998), 167-182.
  12. [He] HEWITT, E.: A problem of set-theoretic topology, Duke Math. J. 10 (1943), 309-333.10.1215/S0012-7094-43-01029-4
  13. [Ke] KELLEY, J.: General Topology. New York, 1955.
  14. [KKM] KENDEROV, P. S.-KORTEZOV, I. S.-MOORS, W. B.: Continuity points of quasicontinuous mappings, Topology Appl. 109 (2001), 321-346.10.1016/S0166-8641(99)00180-7
  15. [N] NEUBRUNN, T.: Quasi-continuity, Real Anal. Exchange 14 (1988), 259-306.10.2307/44151947
  16. [Ra] RAJA: Absolute first Borel class topological spaces (preprint).
  17. [P1] PIOTROWSKI, Z.: Separate and joint continuity in Baire groups, Tatra Mt. Math. Publ. 14 (1998), 109-116.
  18. [P2] PIOTROWSKI, Z.: Quasi-continuity and product spaces, in: Proc. Intern. Conf. Geom. Topology, Warsaw, 1978, PWN, Warsaw, 1980, pp. 349-352.
  19. [PS] PIOTROWSKI, Z.-SZYMANSKI, A.: Closed graph theorem: Topological approach, Rend. Circ. Mat. Palermo (2) 37 (1988), 88-99.10.1007/BF02844269
  20. [V] VELICHKO, N. V.: Theory of resolvable spaces, Mat. Zametki 19 (1976), 109-114.
DOI: https://doi.org/10.2478/v10127-009-0014-9 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 149 - 160
Published on: Nov 12, 2012
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2012 L’ubica Holá, Zbigniew Piotrowski, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons License.