Have a personal or library account? Click to login
Urban Compression Patterns: Fractals and Non-Euclidean Geometries - Inventory and Prospect Cover

Urban Compression Patterns: Fractals and Non-Euclidean Geometries - Inventory and Prospect

Open Access
|Jun 2012

References

  1. Arlinghaus S., 1985. Fractals take a central place. Geografiska Annaler, Journal of the Stockholm School of Economics, 67B: 83-88.10.1080/04353684.1985.11879517
  2. Arlinghaus S., 2010. Fractals take a non-Euclidean place. Solstice: An Electronic Journal of Geography and Mathematics, XXI, 1. Institute of Mathematical Geography, Ann Arbor, http://www.imagenet.org/. http://www.imagenet.org/
  3. Arlinghaus S. & Arlinghaus W., 1989. The fractal theory of central place hierarchies: A Diophantine analysis of fractal generators for arbitrary Löschian numbers. Geographical Analysis: An International Journal of Theoretical Geography, 21(2): 103-121.10.1111/j.1538-4632.1989.tb00882.x
  4. Arlinghaus S., Arlinghaus W. & Harary F., 1993. Sum graphs and geographic information. Solstice: An Electronic Journal of Geography and Mathematics, IV, 1. Institute of Mathematical Geography, Ann Arbor, http://www-personal.umich.edu/~copyrght/image/solstice/sols193.html. http://www-personal.umich.edu/~copyrght/image/solstice/sols193.html
  5. Arlinghaus S. & Batty M., 2006. Zipf's hyperboloid? Solstice: An Electronic Journal of Geography and Mathematics, XVII, 1. Institute of Mathematical Geography, Ann Arbor, http://www.imagenet.org/. http://www.imagenet.org/
  6. Arlinghaus S. & Batty M., 2010. Zipf's hyperboloid revisited: Compression and navigation - canonical form. Solstice: An Electronic Journal of Geography and Mathematics, XXI, 1. Institute of Mathematical Geography, Ann Arbor, http://www.imagenet.org/. http://www.imagenet.org/
  7. Arlinghaus S. & Nystuen J., 1990. Geometry of boundary exchanges: Compression patterns for boundary dwellers. Geographical Review, 80(1): 21-31.10.2307/215895
  8. Arlinghaus S. & Nystuen J., 1991. Street geometry and flows. Geographical Review, 81(2): 206-214.10.2307/215984
  9. Batty M. homepage: http://www.casa.ucl.ac.uk/people/MikesPage.htm
  10. Batty M. & Longley P., references listing: http://www.casa.ucl.ac.uk/people/MikesPage.htm
  11. Benguigui L. & Daoud M., 1991 Is the suburban railway system a fractal? Geographical Analysis, 23: 362-368.10.1111/j.1538-4632.1991.tb00245.x
  12. Elert G., 1995-2007. About dimension. The chaos hypertextbookhttp://hypertextbook.com/chaos/33.shtml
  13. Griffith D., Vojnovic I. & Messina J., 2010. Distances in residential space: Implications from estimated metric functions for minimum path distances. Paper to be submitted to Journal of Transport Geography.
  14. Hausdorff& Besicovitch, historical reference: http://en.wikipedia.org/wiki/Hausdorffdimension
  15. Mandelbrot B., 1982. The fractal geometry of nature. W.H. Freeman, New York.
  16. Ord J., 1975. Estimation methods for models of spatial interaction. Journal of the American Statistical Association, 70: 120-126.10.1080/01621459.1975.10480272
  17. Rodin V. & Rodina E., 2000. The fractal dimension of Tokyo's streets. Fractals, 8: 413-418.10.1142/S0218348X00000457
  18. Shen G., 1997. A fractal dimension analysis of urban transportation networks. Geographical & Environmental Modelling, 1: 221-236.
  19. Wikipedia, Fibonacci coding: http://en.wikipedia.org/wiki/Fibonacci_coding
DOI: https://doi.org/10.2478/v10117-012-0014-8 | Journal eISSN: 2081-6383 | Journal ISSN: 2082-2103
Language: English
Page range: 21 - 28
Published on: Jun 21, 2012
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2012 Daniel Griffith, Sandra Arlinghaus, published by Adam Mickiewicz University
This work is licensed under the Creative Commons License.

Volume 31 (2012): Issue 2 (June 2012)