Have a personal or library account? Click to login
Comparison of Values of Pearson's and Spearman's Correlation Coefficients on the Same Sets of Data Cover

Comparison of Values of Pearson's and Spearman's Correlation Coefficients on the Same Sets of Data

By: Jan Hauke and  Tomasz Kossowski  
Open Access
|Jun 2011

References

  1. Anderson T.W., 1996. R.A. Fisher and multivariate analysis. Statistical Science 11 (1): 20-34.10.1214/ss/1032209662
  2. Bravais A., 1846. Analyse mathématique sur les probabilités des erreurs de situation d'un point. Mémoires présentés par divers savants à l'Académie Royale des Sciences de l'Institut de France 9: 255-332.
  3. Daniels H.E., 1944. The relation between measures of correlation in the universe of sample permutations. Biometrika 33 (2): 129-135.10.1093/biomet/33.2.129
  4. Fisher R.A., 1915. Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika 10: 507-521.10.1093/biomet/10.4.507
  5. Fisher R.A., 1921. On the "probable error" of a coefficient of correlation deduced from a small sample. Metron 1: 3-32.
  6. Galton F., 1869. Hereditary genius. An inquiry into its laws and consequences. MacMillan, London.10.1037/13474-000
  7. Galton F., 1875. Statistics by intercomparison. Philosophical Magazine 49: 33-46.10.1080/14786447508641172
  8. Galton F., 1885. Regression towards mediocrity in hereditary stature. Journal of the Anthropological Institute 15: 246-263.10.2307/2841583
  9. Galton F., 1877. Typical laws of heredity. Proceedings of the Royal Institution 8: 282-301.
  10. Galton F., 1888. Co-relations and their measurement, chiefly from anthropometric data. Proceedings of the Royal Society of London 45: 135-145.10.1098/rspl.1888.0082
  11. Galton F., 1890. Kinship and correlation. North American Review 150: 419-431.
  12. Griffith D.A., 2003. Spatial autocorrelation and spatial filtering. Springer, Berlin.10.1007/978-3-540-24806-4
  13. Haining R., 1991. Bivariate correlation with spatial data. Geographical Analysis 23 (3): 210-227.10.1111/j.1538-4632.1991.tb00235.x
  14. Kendall M.G., 1938. A new measure of rank correlation. Biometrika 30: 81-89.10.2307/2332226
  15. Kendall M.G., 1948. Rank correlation methods. 4th ed. Griffin, London.
  16. Pearson K., 1896. Mathematical contributions to the theory of evolution. III. Regression, heredity, and panmixia. Philosophical Transactions of the Royal Society Ser. A 187: 253-318.10.1098/rsta.1896.0007
  17. Pearson K., 1900. Mathematical contributions to the theory of evolution. VII. On the correlation of characters not quantitatively measurable. Philosophical Transactions of the Royal Society Ser. A 195: 1-47.10.1098/rsta.1900.0022
  18. Pearson K., 1920. Notes on the history of correlation. Biometrika 13: 25-45.10.1093/biomet/13.1.25
  19. Piovani J.I., 2008. The historical construction of correlation as a conceptual and operative instrument for empirical research. Quality & Quantity 42: 757-777.10.1007/s11135-006-9066-y
  20. Plata S., 2006. A note on Fisher's correlation coefficient. Applied Mathematical Letters 19: 499-502.10.1016/j.aml.2005.02.036
  21. Rodgers J.L. & Nicewander W.A., 1988. Thirteen ways to look at the correlation coefficient. The American Statistician 42 (1): 59-66.10.1080/00031305.1988.10475524
  22. Spearman C.E, 1904a. The proof and measurement of association between two things. American Journal of Psychology 15: 72-101.10.2307/1412159
  23. Spearman C.E, 1904b. General intelligence, objectively determined and measured. American Journal of Psychology 15: 201-293.10.2307/1412107
  24. Spearman C.E., 1910. Correlation calculated from faulty data. British Journal of Psychology 3: 271-295.10.1111/j.2044-8295.1910.tb00206.x
  25. Stigler S.M., 1988. Francis Galton's account of the invention of correlation. Statistical Science 4 (2): 73-86.10.1214/ss/1177012580
  26. Student, 1908. Probable error of a correlation coefficient. Biometrika 6: 302-310.10.1093/biomet/6.2-3.302
  27. Valz P.D. & Thompson M.E., 1994. Exact inference for Kendall's S and Spearman's rho. Journal of Computational and Graphical Statistics 3: 459-472.10.1080/10618600.1994.10474658
  28. Walker H. M., 1928. The relation of Plana and Bravais to theory of correlation. Isis 10 (2): 466-484.10.1086/346335
  29. Weida F.M., 1927. On various conceptions of correlation. The Annals of Mathematics, Second Series 29 (1/4): 276-312.10.2307/1968000
  30. Xu Weichao, Yunhe Hou, Hung Y. S. & Yuexian Zou, 2010. Comparison of Spearman's rho and Kendall's tau in normal and contaminated normal models. Manuscript submitted to IEEE Transactions on Information Theory ( http://arxiv.org/PS_cache/arxiv/pdf/1011/1011.2009v1.pdf
  31. Yule G.U., 1897a. On the significance of Bravais' formulae for regression, in the case of skew correlation. Proceedings of the Royal Society of London Ser. A 60: 477-489.10.1098/rspl.1896.0075
  32. Yule G.U., 1897b. On the theory of correlation. Journal of the Royal Statistical Society Ser. A 60: 812-854.10.2307/2979746
  33. Yule G.U., 1903. Notes on the theory of association of attributes in statistics. Biometrika 2: 121-134.10.1093/biomet/2.2.121
  34. Yule G.U., 1907. On the theory of correlation for any number of variables, treated by a new system of notation. Proceedings of the Royal Society of London 79: 182-193.10.1098/rspa.1907.0028
DOI: https://doi.org/10.2478/v10117-011-0021-1 | Journal eISSN: 2081-6383 | Journal ISSN: 2082-2103
Language: English
Page range: 87 - 93
Published on: Jun 24, 2011
Published by: Adam Mickiewicz University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2011 Jan Hauke, Tomasz Kossowski, published by Adam Mickiewicz University
This work is licensed under the Creative Commons License.

Volume 30 (2011): Issue 2 (June 2011)