Have a personal or library account? Click to login
Isolation of cytoplasmic NADPH-dependent phenol hydroxylase and catechol-1,2-dioxygenase from Candida tropicalis yeast Cover

Isolation of cytoplasmic NADPH-dependent phenol hydroxylase and catechol-1,2-dioxygenase from Candida tropicalis yeast

Open Access
|Nov 2010

References

  1. Ahuatzi-Chacon D, Ordorica-Morales G, Ruiz-Ordaz N, Cristiani-Urbina E, Juarez-Ramirez C, Galindez-Mayer J. (2004) Kinetic study of phenol hydroxylase and catechol 1,2-dioxygenase biosynthesis by Candida tropicalis cells grown on different phenolic substrates. World J. Microbiol Biotechnol 20: 695-702.10.1007/s11274-004-2622-5
  2. Bastos AER, Tomisielo VL, Nozawa SR, Trevors JT, Rossi A. (2000) Phenol metabolism by two microorganisms isolated from Amazonian forest soil samples. J. Industr. Microbiol. Biotechnol. 24: 403-409.10.1038/sj.jim.7000006
  3. Bayly RC, Wigmore GJ. (1973) Metabolism of phenol and cresols by mutants of Pseudomonas putida. J Bacteriol 113: 1112-1120.
  4. Briganti F, Pessione E, Guinta C, Scozzafava A. (1997) Purification, biochemical properties and substrate specificity of a catechol 1,2-dioxygenase from a phenol degrading Acinetobacter radioresistens. FEBS Lett 416: 61-64.10.1016/S0014-5793(97)01167-8
  5. Chang YH, Li CT, Chang MC, Shieh WK. (1998) Batch phenol degradation by Candida tropicalis and its fusant. Biotechnol Bioeng 60: 391-395.10.1002/(SICI)1097-0290(19981105)60:3<;391::AID-BIT17>3.0.CO;2-P
  6. Eck R, Bettler J (1991) Cloning and characterization of a gene coding for the catechol 1,2-dioxygenase of Acinetobacter sp. mA3. Gene 123: 87-92.
  7. Gurujeyalakshmi G, Oriel P. (1989) Isolation of phenol-degradation Bacillus stearothermophilus and partial characterization of phenol hydroxylase. Appl Environ Microbio. 55: 500-50210.1128/aem.55.2.500-502.1989
  8. Komárková E, Páca J. (2000) Kinetics of phenol oxidation by Candida tropicalis yeast (in Czech). Chem Listy 94: 729.
  9. Komárková E, Páca J, Klapková E, Stiborová M, Soccol CR, Sobotka M. (2003) Physiological changes of Candida tropicalis population degrading phenol in fed batch reactor. Brazil Arch Biol & Technol 46: 537-542.10.1590/S1516-89132003000400007
  10. Krug M, Ziegler H, Straube G. (1985) Degradation of phenolic compounds by yeast Candida tropicalis HP15. I. Physiology of growth and substrate utilization. J Basic Microbiol 2: 102-110.
  11. Krug M, Straube G. (1986) Degradation of phenolic compounds by yeast Candida tropicalis HP15. II. Some properties of the first two enzymes of the degradation pathway. J Basic Microbiol 5: 271-281.
  12. Martius GGS, Stottmeister U, Jechorek M, Páca J. (1996) Inhibition concentration of phenolic substances under different cultivation conditions. Part II. Impact of dissolved oxygen concentration and temperature on degradation kinetics. Acta Hydrochim Hydrobiol 24: 168-175.
  13. Nakai C, Horiike K, Kuramitsu S, Kagamiyama H, Nozaki M, (1990) Three isoenzymes of catechol 1,2-dioxygenase (pyrocatechase), αα, αβ, and ββ, from Pseudomonas arvilla C-1. J Biol Chem 265: 660-665.10.1016/S0021-9258(19)40100-2
  14. Neujahr HY, Gaal A. (1973) Phenol hydroxylase from yeast. Purification and properties of the enzyme from Trichosporum cutaneum. Eur J Biochem 35: 386-400.
  15. Páca J, Komárková E, Prell A, Stiborová M, Sobotka M. (2002) Kinetics of phenol oxidation by Candida tropicalis: effects of oxygen supply rate and nutrients on phenol inhibition. Folia Microbiol 47: 685-692.
  16. Páca J Jr, Kremláčková V, Turek M, Suchá V, Vilímková L, Páca J, Halecký M, Stiborová M, (2007) Isolation and partial characterization of cytoplasmic NADPH-dependent phenol hydroxylase oxidizing phenol to catechol in Candida tropicalis yeast. Enzyme Microb Tech 40: 919-926.10.1016/j.enzmictec.2006.07.028
  17. Páca J, Martius GGS. (1996) Inhibition concentration of phenolic substances under different cultivation conditions. Part I. Phenol oxidation by mixed microbial population in a model system. Acta Hydrochim Hydrobiol 24: 127-131.
  18. Shen XH, Liu ZP, Liu SJ. (2004) Functional identification of the gene locus (ncg12319) and characterization of catechol 1,2-dioxygenase in Corybebacterium glutamicum. Biotechnol Lett 26: 575-580.
  19. Stephenson T. (1990) Substrate inhibition of phenol oxidation by a strain of Candida tropicalis. Biotechn Lett 12: 843-846.10.1007/BF01022607
  20. Stiborová M, Asfaw B, Frei E, Schmeiser HH, Wiessler M. (1995) Benzenediazonium ion derived from Sudan I forms an 8-(phenylazo)guanine adduct in DNA. Chem Res Toxicol 8: 489-498.10.1021/tx00046a002
  21. Stiborová M, Frei E, Wiessler M, Schmeiser HH. (2001a) Human enzymes involved in metabolic activation of carcinogenic aristolochic acids: evidence for reductive activation by cytochromes P450 1A1 and 1A2. Chem Res Toxicol 14: 1128-1137.10.1021/tx010059z11511187
  22. Stiborová M, Hájek M, Vošmiková H, Frei E, Schmeiser HH. (2001b) Isolation of DT-diaphorase [NAD(P)H dehydrogenase (quinone)] from rat liver cytosol: identification of new substrates, carcinogenic aristolochic acids. Collect Czech Chem Commun 66: 959-972.10.1135/cccc20010959
  23. Stiborová M, Hudeček J, Páca J Jr, Martínek V, Páca J. (2004) Study of enzymes metabolizing environmental pollutants as a means of modulating their biodegradation (in Czech). Chem Listy 98: 876-890.
  24. Stiborová M, Suchá V, Mikšanová M, Páca J Jr, Páca J. (2003) Hydroxylation of phenol to catechol by Candida tropicalis: involvement of cytochrome P450. Gen Physiol Biophys 22: 167-179.
  25. Tsai S-C, Li Y-K. (2007) Purification and characterization of a catochel 1,2-dioxygenase from a phenol degrading Candida albicans TL3. Arch Microbiol 187: 199-206.10.1007/s00203-006-0187-417089147
  26. Tsai S-C, Tsai L-D, Li Y-K. (2005) An isolated Candida albicans TL3 capable of degrading phenol at large concentration. Biosci Biotechnol Biochem 69: 2358-2367.
  27. Yang R, Humphrey AE. (1975) Dynamic and steady state studies of phenol biodegradation in pure and mixed cultures. Biotechno. Bioeng 17: 1211-1235.10.1002/bit.2601708091236402
  28. Xu D, Ballou DP, Massey V. (2001) Studies of the mechanism of phenol hydroxylase: mutants Tyr289Phe, Asp54Asn, and Arg281Met. Biochemistry 40: 12369-12378.10.1021/bi010962y11591156
DOI: https://doi.org/10.2478/v10102-010-0046-7 | Journal eISSN: 1337-9569 | Journal ISSN: 1337-6853
Language: English
Page range: 225 - 230
Published on: Nov 1, 2010
Published by: Slovak Academy of Sciences, Institute of Experimental Pharmacology & Toxicology, Centre of Experimental Medicine
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2010 Lenka Vilímková, Jan Páca, Veronika Kremláčková, Jan Páca, Marie Stiborová, published by Slovak Academy of Sciences, Institute of Experimental Pharmacology & Toxicology, Centre of Experimental Medicine
This work is licensed under the Creative Commons License.

Volume 1 (2008): Issue 3-4 (December 2008)