Have a personal or library account? Click to login
Protective effects of manganese(II) chloride on hyaluronan degradation by oxidative system ascorbate plus cupric chloride Cover

Protective effects of manganese(II) chloride on hyaluronan degradation by oxidative system ascorbate plus cupric chloride

Open Access
|Apr 2010

References

  1. Archibald FS, Fridovich I. (1982). The scavenging of superoxide radical by manganous complexes: in vitro. Arch Biochem Biophys 214: 452-463.
  2. Buettner GR, Jurkiewicz BA. (1993). Ascorbate free radical as a marker of oxidative stress: an EPR study. Free Radic Biol Med 14: 49-55.
  3. Buettner GB, Jurkiewicz BA. (1996). Catalytic metals, ascorbate and free radicals: combinations to avoid. Radiat Res 145: 532-541.
  4. Cavallini L, Valente M, Bindoli A. (1984). On the mechanism of inhibition of lipid peroxidation by manganese. Inorg Chim Acta 91: 117-120.
  5. Chang EC, Kosman DJ. (1989). Intracellular Mn (II)-associated superoxide scavenging activity protects Cu, Zn superoxide dismutase-deficient Saccharomyces cerevisiae against dioxygen stress. J Biol Chem 264: 12172-12178.
  6. Cheton PL-B, Archibald FS. (1988). Manganese complexex and the generation and scavenging of hydroxyl radicals. Free Radic Biol Med 5: 325-333.
  7. Coassin M, Ursini F, Bindoli A. (1992). Antioxidant effect of manganese. Arch Biochem Biophys 299: 330-333.
  8. Figueroa N, Nagy B, Charkrabarti B. (1977). Cu2+ -Hyaluronic acid complex: spectrophotometric detection. Biochem. Biophys Res Commun 74: 460-465.
  9. Fisher AEO, Naughton DP. (2004). Iron supplements: The quick fix with long-term consequences. Nutr J 3: 1-5.
  10. Fisher AEO, Naughton DP. (2005). Therapeutic chelators for the twenty first century: new treatments for iron and copper mediated inflammatory and neurological disorders. Curr Drug Deliv 2: 261-268.
  11. Fisher AEO, Naughton DP. (2003). Vitamin C contributes to inflammation via radical generating mechanisms: a cautionary note. Med Hypotheses 61: 657-660.
  12. Flemmig J, Arnhold J. (2007). Ferrous iron-induced strand breaks in the DNA plasmid pBR322 are not mediated by hydrogen peroxide. Eur Biophys J 36: 377-384.
  13. Gray B, Carmichael AJ. (1992). Kinetics of superoxide scavenging by dismutase enzymes and manganese mimics determined by electron spin resonance. Biochem J 281: 795-802.
  14. Halliwell B, Foyer CH. (1976). Ascorbic acid, metal ions and the superoxide radical. Biochem J 155: 697-700.
  15. Harris MJ, Herp A, Pigman W. (1976). Metal catalysis in the depolymerization of hyaluronic acid by autoxidants. J Am Chem Soc 94: 7570-7572.
  16. Hussain S, Ali SF. (1999). Manganese scavenges superoxide and hydroxyl radicals: an in vitro study in rats. Neurosci Lett 261: 21-24.
  17. Johnson KA, Hulse DA, Hart RC, Kochevar D, Chut Q. (2001). Effects of an orally administered mixture of chondroitin sulfate, glucosamine hydrochloride and manganese ascorbate on synovial fluid chondroitin sulfate 3B3 and 7D4 epitope in a canine cruciate ligament transection model of osteoarthritis. Osteoarthritis Cartilage 9: 14-21.
  18. Khan MMT, Martell AE. (1967). Metal ion and metal chelate catalyzed oxidation of ascorbic acid by molecular oxygen. 2. Cupric and ferric chelate catalyzed oxidation. J Am Chem Soc 89: 7104-7111.
  19. Khan MM, Martell AE. (1967). Metal ion and metal chelate catalyzed oxidation of ascorbic acid by molecular oxygen. I. Cupric and ferric ion catalyzed oxidation. J Am Chem Soc 89: 4176-4185.
  20. Kogan G, Šoltés L, Stern R, Mendichi R. (2007) Chapter 31: Hyaluronic acid: A Biopolymer with Versatile Physico-Chemical and Biological Properties, in Handbook of Polymer Research: Monomers, Oligomers, Polymers and Composites (Pethrick RA, Ballada A, Zaikov GE eds) pp. 393-439, New York, Nova Science Publishers.
  21. Kogan G, Šoltés L, Stern R, Schiller J, Mendichi R. (2008) Hyaluronic Acid: Its Function and Degradation in In Vivo Systems, in Studies in Natural Products Chemistry, Vol. 35 Bioactive Natural Products, Part D (Atta-ur-Rahman ed) pp. 789-882, Amsterdam, Elsevier.10.1016/S1572-5995(08)80035-X
  22. Koppenol WH. (1994). Chemistry of Iron and Copper in Radical Reactions, in Free Radical Damage and Its Control (Rice-Evans CA, Burdon RH eds) pp. 3-24, Amsterdam, Elsevier Science B. V.
  23. Magnani A, Silvestri V, Barbucci R. (1999). Hyaluronic acid and sulphated hyaluronic acid in aqueous solution: effect of the sulphatation on the protonation and complex formation with Cu2+ and Zn2+ ions. Macromol Chem Phys. 200: 2003-2014.
  24. Matsumura G, Pigman W. (1965). Catalytic role of iron ion in the depolymerization of hyaluronic acid by ascorbic acid. Arch Biochem Biophys 110: 526-533.
  25. McCord JM. (1974). Free radicals and inflammation: protection of synovial fluid by superoxide dismutase. Science 185: 529-531.
  26. Mendoza G, Álvarez AI, Pulido MM, Molina AJ, Merino G, Real R, Fernandes P, Prieto JG. (2007). Antioxidant profile of hyaluronan: physico-chemical features and its role in pathologies. Carbohydr Res 342: 96-102.
  27. Nagy L, Yamashita S, Yamaguchi T, Sipos P, Wakita H, Nomura M. (1998). The local structures of Cu(II) and Zn(II) complexes of hyaluronate. J Inorg Biochem 72: 49-55.
  28. Naughton DP, Knappitt J, Fairburn K, Gaffnev K, Blake DR, Grootveld M. (1995). Detection and investigation of the molecular nature of low-molecular-mass copper ions in isolated rheumatoid knee-joint synovial fluid. FEBS Lett 361: 167-172.
  29. Niedermeier W, Dobson C, Laney RP. (1967a). Studies on the ascorbic acid-induced depolymerization of hyaluronic acid. Biochim Biophys Acta 141: 366-373.10.1016/0304-4165(67)90111-0
  30. Niedermeier W, Laney RP, Dobson C. (1967). The mechanism of action of ceruloplasmin in inhibiting ascorbic acid -induced depolymerization of hyaluronic acid. Biochim Biophys Acta 148: 400-405.
  31. Niedermeier W, Griggs JH. (1971). Trace metal composition of synovial fluid and blood serum of patients with rheumatoid arthritis. J Chron Dis 23: 527-536.
  32. Park JW, Chakrabarti B. (1978). Optical properties and viscosity of hyaluronic acid in mixed solvent: evidence of conformational transition biopolymers. Biopolymers 17: 1323-1333.
  33. Parsons BJ, Al-Assaf S Navaratnam S Phillips GO. (2002). Comparison of the Reactivity of Different Oxidative Species (ROS) towards Hyaluronan, in Hyaluronan: Chemical, Biochemical and Biological Aspects, Vol. 1 (Kennedy JF, Phillips GO, Williams PA, Hascall VC eds) pp. 141-150, Cambridge, MA, Woodhead Publishing Ltd.
  34. Pirc ET, Arčon I, Kodre A, Bukovec P. (2004). Metal-ion environment in solid Mn(II), Co(II) and Ni(II) hyaluronates. Carbohydr Res 339: 2549-2554.
  35. Roth JA. (2006). Homeostatic and toxic mechanisms regulating manganese uptake, retention, and elimination. Biol Res 39: 45-57.
  36. Rychlý J, Šoltés L, Stankovská M, Janigová I, Csomorová K, Sasinková V, Kogan G, Gemeiner P. (2006). Unexplored capabilities of chemiluminescence and thermoanalytical methods in characterization of intact and degraded hyaluronans. Polym Degrad Stab 91: 3174-3184.
  37. Qian SY, Buettner GR. (1999). Iron and dioxygen chemistry is an important route to initiation of biological free radical oxidations: an electron paramagnetic resonance spin trapping study. Free Radic Biol Med 26: 1447-1456.
  38. Sakurai K, Andoh M, Yamada M, KoderaY, Nishimura H, Hiroto M, Matsushima A, Aoyama M, Yamamoto H, Inadal Y. (1997). Anti-inflammatory activity of superoxide dismutase conjugated with sodium hyaluronate. Jpn J Pharmacol 74: 117-120.
  39. Samuni A, Aronovitch J, Godinger D, Chevion M, Czapski G. (1983). On the cytotoxicity of vitamin C and metal ions. A site-specific Fenton mechanism. Eur J Biochem 137: 119-124.
  40. Shukla GS, Chandra SV. (1981). Manganese toxicity: Lipid peroxidation in rat brain. Acta Pharmacol Toxicol 48: 95-100.
  41. Shukla N, Maher J, Masters J, Angelini GD, Jeremy JY. (2006). Does oxidative stress change ceruloplasmin from a protective to a vasculopathic risk factor? Atherosclerosis 187: 238-250.10.1016/j.atherosclerosis.2005.11.03516412446
  42. Singh RK, Kooreman KM, Babbs CF, Fessler JF, Salaris SC. (1992). Potential use of simple manganese salts as antioxidant drugs in horses. Am J Vet Res 53: 1822-1829.
  43. Stankovská M, Šoltés L, Vikartovská A, Gemeiner P, Kogan G, Bakoš D. (2005). Degradation of high-molecular-weight hyaluronan: rotational viscometry study. Biologia 60(Suppl. 17): 149-152.
  44. Stankovská M, Šoltés L, Vikartovská A, Mendichi R, Lath D, Molnárová M, Gemeiner P. (2004). Study of hyaluronan degradation by means of rotational viscometry: contribution of the material of viscometer. Chem Pap 58: 348-352.
  45. Swann DA. (1967). The degradation of hyaluronic acid by ascorbic acid. Biochem J 102: 42-44.
  46. Sziraki I, Mohanakumar KP, Rauhala P, Kim HG, Yeh KJ, Chiueh CC. (1998). Manganese: a transition metal protects nigrostriatal neurons from oxidative stress in the iron-induced animal model of Parkinsonism. Neuroscience 85: 1101-1111.
  47. Sziraki I, Rauhala P, Koh KK, Bergen PV, Chiueh CC. (1999). Implications for atypical antioxidative properties of manganese in iron-induced brain lipid peroxidation and copper-dependent low density lipoprotein conjugation. Neurotoxicology 20: 455-466.
  48. Šoltés L, Kogan G, Stankovská M, Mendichi R, Rychlý J, Schiller J, Gemeiner P. (2007). Degradation of high-molar-mass hyaluronan and characterization of fragments. Biomacromolecules 8: 2697-2705.
  49. Šoltés L, Kogan G. (2009). Catabolism of hyaluronan: involvement of transition metals. Interdisciplinary Toxicology 2: 229-238.
  50. Šoltés L, Stankovská M, Brezová V, Schiller J, Arnhold J, Kogan G, Gemeiner P. (2006). Hyaluronan degradation by copper(II) chloride and ascorbate: rotational viscometric, EPR spin-trapping, and MALDI-TOF mass spectrometric investigations. Carbohydr Res 341: 2826-2834.
  51. Šoltés L, Stankovská M, Kogan G, Gemeiner P, Stern R. (2005). Contribution of oxidative-reductive reactions to high-molecular-weight hyaluronan catabolism. Chem Biodivers 2: 1242-1245.
  52. Šoltés L, Valachová K, Mendichi R, Kogan G, Arnhold J, Gemeiner P. (2007). Solution properties of high-molar-mass hyaluronans: the biopolymer degradation by ascorbate. Carbohydr Res 342: 1071-1077.
  53. Tampo Y, Yonaha M. (1992). Antioxidant mechanism of Mn(II) in phospholipid peroxidation. Free Radic Biol Med 13: 115-20.
  54. Valko M, Morris H, Cronin MTD. (2005). Metals, toxicity and oxidative stress. Curr Med Chem 12: 1161-1208.
  55. Varani J, Ginsburg I, Gibbs DF, Mukhopadhyay PS, Sulavik C, Johnson KJ, Weinberg JM, Ryan US, Ward PA. (1991). Hydrogen peroxide-induced cell and tissue injury: protective effects of Mn2+. Inflammation 15: 291-301.
  56. Volpi N. (2006). Therapeutic applications of glycosaminoglycans. Curr Med Chem 13: 1799-810.
  57. Weigel PH, DeAngelis PL. (2007). Hyaluronan synthases: a decade-plus of novel glycosyltransferases. J Biol Chem 282: 36777-36781.
  58. Weissberger A, LuValle JE, Jr. Thomas DS. (1943). Oxidation processes. XVI. The autoxidation of ascorbic acid. J Am Chem Soc 65: 1934-1939.
  59. Wong SF, Halliwell B, Richmond R, Skowroneck WR. (1981). The role of suproxide and hydroxyl radicals in the degradation of hyaluronic acid induced by metal ions and by ascorbic acid. J Inorg Biochem 14: 127-134.
  60. Worley CG, Bombick D, Allen JW, Suber RL, Aschner M. (2002). Effects of manganese on oxidative stress in CATH.a cells. Neurotoxicology 23: 159-164.
DOI: https://doi.org/10.2478/v10102-010-0001-7 | Journal eISSN: 1337-9569 | Journal ISSN: 1337-6853
Language: English
Page range: 26 - 34
Published on: Apr 13, 2010
Published by: Slovak Academy of Sciences, Institute of Experimental Pharmacology & Toxicology, Centre of Experimental Medicine
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2010 Katarína Valachová, Grigorij Kogan, Peter Gemeiner, Ladislav Šoltés, published by Slovak Academy of Sciences, Institute of Experimental Pharmacology & Toxicology, Centre of Experimental Medicine
This work is licensed under the Creative Commons License.

Volume 3 (2010): Issue 1 (March 2010)