Have a personal or library account? Click to login
Organization in Finance Prepared by Stochastic Differential Equations with Additive and Nonlinear Models and Continuous Optimization Cover

Organization in Finance Prepared by Stochastic Differential Equations with Additive and Nonlinear Models and Continuous Optimization

Open Access
|Dec 2008

References

  1. Akume, D. A. (2007). Risk Constrained Dynamic Portfolio Management, Doctoral's Thesis, University of Yaounde I, Department of Mathematics.
  2. Aster, R., Borchers, B. & Thurber, C. (2005). Parameter Estimation and Inverse Problems, Elsevier Academic Press, London.
  3. Boyd, S. & Vandenberghe, L. (2004). Convex Optimization, Cambridge University Press, Cambridge.10.1017/CBO9780511804441
  4. Buja, A., Hastie, T. & Tibshirani, R. (1989). Linear smoothers and additive models, The Ann. Stat.17(2): 453-510.10.1214/aos/1176347115
  5. De Boor, C. (2001). Practical Guide to Splines. Springer Verlag, New York.
  6. Friedman, J. H. & Stuetzle, W. (1981). Projection pursuit regression, J. Amer. Statist Assoc.76: 817-823.
  7. Hastie, T. & Tibshirani, R. (1987). Generalized additive models: some applications, J. Amer. Statist. Assoc.82(398): 371-386.
  8. Hastie, T., Tibshirani, R. & Friedman, J. H. (2001). The Element of Statistical Learning, Springer Verlag, New York.10.1007/978-0-387-21606-5
  9. Işcanoğlu Çekiç, A., Weber G.-W. & Taylan, P. (2007). Predicting Default Probabilities with Generalized Additive Models for Emerging Markets, Invited Lecture, Graduate Summer School on New Advances in Statistics, METU, August 11-24, 2007. http://144.122.137.55/gweber/
  10. Kloeden, P. E, Platen, E. & Schurz, H. (1994). Numerical Solution of SDE Through Computer Experiments, Springer Verlag, New York.10.1007/978-3-642-57913-4
  11. Nash, G., and Sofer, A. (1996). Linear and nonlinear programming, McGraw-Hill, New York.
  12. Nemirovski, A.(2002) Five lectures on modern convex optimization, Available from: http://iew3.technion.ac.il/Labs/Opt/opt/LN/Final.pdf
  13. Nesterov, Y. E. & Nemirovskii, A. S. (1994) Interior Point Methods in Convex Programming, SIAM Publications, Philadelphia.
  14. Øksendal, B. K. (2003). Stochastic Differential Equations: An Introduction with Applications, Springer, Berlin.10.1007/978-3-642-14394-6
  15. Seydel, R. U. (2003). Tools for Computational Finance, Springer, Berlin.10.1007/978-3-662-22551-6
  16. Taylan, P. & Weber, G.-W. (2007). New approaches to regression in financial mathematics by additive models, J. Comp. Techn.12(2): 3-22.
  17. Taylan, P. & Weber, G.-W. (2007) Approximation of stochastic differential equations by additive models using splines and conic programming, to appear in the proceedings of CASYS'07, Eighth International Conference on Computing Anticipatory Systems, Edited by Dubois, D. M. American Institute of Physics.
  18. Taylan, P., Weber, G.-W. & Beck, A. (2007) New approaches to regression by generalized additive, models and continuous optimization for modern applications in finance, science and technology, Optimization56(5-6): 675-698.10.1080/02331930701618740
DOI: https://doi.org/10.2478/v10051-008-0020-8 | Journal eISSN: 1581-1832 | Journal ISSN: 1318-5454
Language: English
Page range: 185 - 193
Published on: Dec 18, 2008
Published by: University of Maribor
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2008 Pakize Taylan, Gerhard-Wilhelm Weber, published by University of Maribor
This work is licensed under the Creative Commons License.

Volume 41 (2008): Issue 5 (September 2008)