Have a personal or library account? Click to login
Laser-Micro/Nanofabricated 3D Polymers for Tissue Engineering Applications Cover

References

  1. Farsari, M., & Chichkov, B.N. (2009). Materials processing: two-photon fabrication. Nat. Photonics, 3, 450-452.10.1038/nphoton.2009.131
  2. Ostendorf, A., & Chichkov, B.N. (2006). Two-photon polymerization: a new approach to micromachining. Photon. Spectra, 40 (10), 72-80.
  3. Naulleau, P.P., Anderson, C.N., Chiu, J., Denham, P., George, S., Goldberg, K.A., Goldstein, M., Hoef, B., Hudyma, R., Jones, G., Koh, C., La Fontaine, B., Ma, A., Montgomery, W., Niakoula, D., Park, J., Wallow, T., & Wurm, S. (2009). 22-nm half-pitch extreme ultraviolet node development as the SEMATECH Berkeley microfield exposure tool. Microelectron. Eng., 86 (4-6), 448-455.10.1016/j.mee.2009.03.013
  4. Sunne, G.R. (2008). Electron beam lithography for nanofabrication. PhD thesis, University of Barcelona (Barcelona), 17-21.
  5. Schift, H. (2008). Nanoimprint lithography: an old story in modern times? (a review). J. Vac. Sci. Technol., B 26 (2), 458-480.10.1116/1.2890972
  6. Rousset, S., & Ortega, E. (2006). Self-organized nanostructures. J. Phys.: Condens. Matter, 18 (13).
  7. Xia, Y., & Whitesides, G.M. (1998). Soft lithography. Ann. Rev. Mater. Sci., 28 (1), 153-184.10.1146/annurev.matsci.28.1.153
  8. Stampfl, J., Baudis, S., Heller, C., Liska, R., Neumeister, A., Kling, R., Ostendorf, A., & Spitzbart, M. (2008). Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography. J. Micromech. Microeng., 18 (12), 125014.10.1088/0960-1317/18/12/125014
  9. Walther, M., Ortner, A., Meier, H., Löffelmann, U., Smith, P. J., & Korvink, J. G. (2009). Terahertz metamaterials fabricated by inkjet printing. Appl. Phys. Lett., 95, (25), 251107.10.1063/1.3276544
  10. Dengfeng, T., Yan, L., Fengjie, Q., Hong, Y., Qihuang, G., Xianzi, D., & Xuanming, D. (2007). Reduction in feature size of two-photon polymerization using SCR500. Appl. Phys. Lett., 90 (7), 071106.
  11. Maruo, S., Takaura, A., & Saito, Y. (2009). Optically driven micropump with a twin spiral. Microrotor. Opt. Express, 17 (21), 18525-18532.10.1364/OE.17.01852520372583
  12. Wu, D., Chen, Q., Niu, L., Wang, J., Wang, J., Wang, R., Xia, H., & Sun, H. (2009). Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices. Lab. Chip., (9), 2391-2394.10.1039/b902159k19636471
  13. Sun, Q., Juodkazis, S., Murazawa, N., Mizeikis, V., & Misawa, H. (2010). Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses. J. Micromech. Microeng., 20 (3), 035004.10.1088/0960-1317/20/3/035004
  14. Malinauskas, M., Gilbergs, H., Žukauskas, A., Purlys, V., Paipulas, D., & Gadonas, R., (2010). A femtosecond laser induced two-photon photopolymerization technique for structuring microlenses. J. Opt., 12 (3), 035204.10.1088/2040-8978/12/3/035204
  15. Ovsianikov, A., Schlie, S., Ngezahayo, A., Haverich, A., & Chichkov, B. N. (2008). Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials. J. Tissue. Eng. Regen. Med., 1 (6), 443-449.
  16. Griffith, L.G., & Naughton, G. (2002). Expanding opportunities in tissue engineering - current challenges. Science, 295 (5557).10.1126/science.1069210
  17. Malinauskas, M., Danilevičius, P., Baltriukienė, D., Rutkauskas, M., Žukauskas, A., Kairytė, Ž., Bičkauskaitė, G., Purlys, V., Paipulas, D., Bukelskienė, V., & Gadonas, R. (2010). 3D artificial polymeric scaffolds for stem cell growth fabricated by femtosecond laser. Lithuanian J. Phys., 50 (1), 75-82.10.3952/lithjphys.50121
  18. Hutmacher, D.W. (2000). Scaffolds in tissue engineering of bone and cartilage. Biomaterials, 21(24), 2529-2543.10.1016/S0142-9612(00)00121-6
  19. Lutolf, M.P., & Hubbell, J.A. (2005). Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol., 23, 47-55.10.1038/nbt1055
  20. Li, Y., Yang, S. (2001). Effects of three-dimensional scaffolds on cell organization and tissue development. Biotechnol. Bioprocess Eng., 6 (5), 311-325.10.1007/BF02932999
  21. Braukel, J.H., Brendel, Z.E., Martinson, L.A., Crudele, J., Johnston, W.D., & Johnson, R.C. (1995). Neovascularization of synthetic membranes directed by membrane microarchitecture. J. Biomed. Mater. Res., 29 (12) 1517-1524.
  22. Nehrer, S., Breinan, H.A., Ramappa, A., Young, G., Shortkroff, S., Louie, L.K, Sledge, C.B., Yannas, I.V. & Spector, M. (1997). Matrix collagen type and pore size influence behaviour of seeded canine chondrocytes. Biomaterials, 18 (11), 769-776.10.1016/S0142-9612(97)00001-X
  23. Whang, K., Thomas, C.H., & Healy, K.E. (1995). A novel method to fabricate bioabsorbable scaffolds. Polymer, 36, 837-842.10.1016/0032-3861(95)93115-3
  24. Wake, M.C., Patrick, C.W., & Mikos, A.G. (1994). Pore morphology effects on the fibrovascular tissue growth in porous polymer substrates. Cell Transplantation, (3), 339-343.10.1177/0963689794003004117522866
  25. Yannas, I., Lee, Z.E., Orgil, O.E., Krabut, E.M., & Murphy, E. (1989). Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc. Natl. Acad. Sci. (USA), 86, 933-937.10.1073/pnas.86.3.9332865932915988
  26. Patrick, C.W., Chauvin, E.B., Hobley, J. & Reece, G.P. (1999). Preaclipocyte seeded PLGA scaffolds for adipose tissue engineering. Tissue Eng., 5 (2), 139-151.10.1089/ten.1999.5.13910358221
  27. Boyan, B.D., Humnert, Z., Dean, D.D., & Schwartz, Z. (1996). Role of material surfaces in regulating bone and cartilage cell response. Biomaterials, 17 (2), 137-146.10.1016/0142-9612(96)85758-9
  28. Ma, P.X., (2004). Scaffolds for tissue fabrication. Mater. Today, 7 (5), 38-40.10.1016/S1369-7021(04)00233-0
  29. Tayalia, P., Mendonca, C. R., Baldacchini, T., Mooney, D.J., Mazur, E. (2008). 3D cell-migration studies using two-photon engineered polymer scaffolds. Adv. Mater., 20 (23), 4494-4498.10.1002/adma.200801319
  30. Claeyssens, F., Hasan, E.A., Gaidukevičiūtė, A., Achilleos, D.S., Ranella, A., Reinhardt, C., Ovsianikov, A., Shizhou, X., Fotakis, C., Vamvakaki, M., Chichkov, B.N., & Farsari, M. (2009). Three-dimensional biodegradable structures fabricated by two-photon polymerization. Langmuir, 25 (5), 3219-3223.10.1021/la803803m19437724
  31. Malinauskas, M., Purlys, V., Rutkauskas, M., & Gadonas, R. (2009). Two-photon polymerization for fabrication of three-dimensional micro- and nanostructures over a large area. SPIE Proc., 7204, 72040C.10.1117/12.811125
  32. Gittard, S.D., Narayan, R.J., Lusk, J., Morel, P., Stockmans, F., Ramsey, M., Laverde, C., Phillips, J, Monteiro-Riviere N.A, Ovsianikov, A. & Chichkov B.N. (2009). Rapid prototyping of scaphoid and lunate bones. Biotechnol. J., 4 (1), 129-134.10.1002/biot.20080023319156737
  33. Stampfl, J., Baudis, S., Heller, C., Liska, R., Neumeister, A., Kling, R., Ostendorf, A., & Spitzbart, M. (2008). Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography. J. Micromech. Microeng., 18 (12), 125014.10.1088/0960-1317/18/12/125014
  34. Cumming, D.R.S, Thoms, S., Beaumont, S.P., & Weaver J.M.R. (1996). Fabrication of 3 nm wires using 100 keV electron beamlithography and poly(methyl methacrylate) resist, Appl. Phys. Lett., 68 (3), 322-324.
  35. Chen, W., & Ahmed, H. (1993). Fabrication of 5-7 nm wide etched lines in silicon using 100 keV electron-beam lithography and polymethylmethacrylate resist. Appl. Phys. Lett., 62 (13), 1499-1501.10.1063/1.109609
  36. Schizas, C., Melissinaki, V., Gaidukevičiūte A., Reinhardt, C., Ohrt, C., Dedoussis, V., Chichkov, B.N., Fotakis, C., Farsari, M., & Karalekas, D. (2009). On the design and fabrication by two-photon polymerization of a readily assembled micro-valve. Int. J. Adv. Manuf. Technol., 48 (5-8), 435-441.
  37. Passinger, S., Ovsianikov, A., Kiyan, R., Reinhardt, C., Ostendorf, A., & Chichkov, B.N. (2008). Two-photon polymerization for industrial applications. Proc LPM 2008.
  38. Malinauskas, M., Purlys, V., Rutkauskas, M., Gaidukevičūtė, A., & Gadonas R. (2010). Femtosecond visible light induced two-photon photopolymerization for 3D micro/nanostructuring in photoresists and photopolymers. Lithuanian J. Phys., 50 (2), 201-207.10.3952/lithjphys.50203
  39. Weiß, T., Hildebrand, G., Schade, R., & Liefeith, K. (2009). Two-photon polymerization for microfabrication of three-dimensional scaffolds for tissue engineering application. Eng. Life Sci., 9 (5), 384-390.10.1007/978-3-642-03900-3_41
  40. Ovsianikov, A., Viertl, J., Chichkov, B.N, Oubaha, M., MacCraith, B., Sakellari, I., Giakoumaki, A., Gray, D., Vamvakaki, M., Farsari, M., & Fotakis, C. (2008). Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. ACS Nano, 2 (11), 2257-2262.10.1021/nn800451w
  41. Ovsianikov, A., Gaidukevičiūtė, A., Chichkov, B.N, Oubaha, M. MacCraith, B.D, Sakellari, I., Giakoumaki, A., Gray, D., Vamvakaki, M., Farsari, M., & Fotakis C. (2008). Two-photon polymerization of hybrid sol-gel materials for photonics applications. Laser Chem., 493059.10.1155/2008/493059
  42. Ovsianikov, A., Ostendorf, A., & Chichkov, B.N. (2007). Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine. Appl. Surf. Sci., 253 (15), 6599-6602.10.1016/j.apsusc.2007.01.058
  43. Ovsianikov, A., Malinauskas, M., Schlie, S., Chichkov, B., Gittard, S., Narayan, R., Löbler, M., Sternberg, K., Schmitz, K.-P., Haverich, A. (2011). Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications. Acta Biomater., 7, 967-974.10.1016/j.actbio.2010.10.023
  44. Inoue, S., & Oldenbourg, R. (1995). Handbook of optics: devices, measurements and properties, Vol. 2, ed. M. Bass (McGraw. Hill), 566-568.
  45. Liu, Y, Pyrak-Nolte, L., & Nolte, D. (2008). General 3D microporous structures fabricated with two-photon lasermachining. SPIE Proc., 6886, 68860Y.
  46. Chachques, J.C., Trainini, J.C., Lago, N., Cortes-Morichetti, M., Schussler, O., & Carpentier, A. (2008). Myocardial assistance by grafting a new bioartificial upgraded myocardium magnum trial: Clinical feasibility study. Ann. Thorac. Surg., 85, 901-908.10.1016/j.athoracsur.2007.10.052
  47. Weng, J., & Wang, M. (2001). Producing chitin scaffolds with controlled pore size and interconnectivity for tissue engineering. J. Mater. Sci. Lett., 20, 1401-1403.10.1023/A:1011643511015
  48. Hollister, S.J, Maddox, R.D., & Taboas, J.M. (2002). Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomater., 23 (20), 4095-4103.10.1016/S0142-9612(02)00148-5
  49. Bukelskienė, V., Baltriukienė, D., Bironaitė, D., Imbrasaitė, A., Širmenis, R., Balčiūnas, M., Žurauskas, E., & Kalvelytė, A. (2005). Muscle derived primary stem cell lines for heart repair. Sem. Cargiol., 11 (3), 99-105.
  50. Širmenis, R., Bukelskienė, V., Domkus, V., & Sirvydis, V. (1999). Cellular cardiomyoplasty: isolation and cultivation of skeletal musclesatellite cells. Acta Med. Lituanica, (6), 178-181.
  51. Paital, S.R., Cao, Z., He, W., & Dahotre, N.B. (2010). Wetting effects on in vitro bioactivity and in vitro biocompatibility of laser micro-textured Ca-P coating. Biofabrication, (2), 025001.10.1088/1758-5082/2/2/02500120811129
  52. Zhang, D., Chen, F., Fang, G., Yang, Q., Xie, D., Qiao, G., Li, W., Si, J., & Hou, X. (2010). Wetting characteristics on hierarchical structures patterned by a femtosecond laser. J. Micromech. Microeng., (20), 075029.10.1088/0960-1317/20/7/075029
DOI: https://doi.org/10.2478/v10047-011-0013-x | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 32 - 43
Published on: May 19, 2011
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2011 P. Danilevičius, A. Žukauskas, G. Bičkauskaitė, V. Purlys, M. Rutkauskas, T. Gertus, D. Paipulas, J. Matukaitė, D. Baltriukienė, M. Malinauskas, published by Institute of Physical Energetics
This work is licensed under the Creative Commons License.

Volume 48 (2011): Issue 2 (April 2011)