Have a personal or library account? Click to login
Experimental Study of the Combustion Dynamics of Renewable & Fossil Fuel Co-Fire in Swirling Flame Cover

Experimental Study of the Combustion Dynamics of Renewable & Fossil Fuel Co-Fire in Swirling Flame

Open Access
|Nov 2010

References

  1. Global warming (2009). Union of Concerned Scientistshttp://www.ucsusa.org/
  2. Stephens, E. A., Williams, L. D., & Nicholas, N. S. (2003). The Role of Renewable Energy in Reducing Greenhouse Gas Build-up, 1-4. http://www.tva.gov/environment/air/ontheair/renewable.htm
  3. Climate Change Home (2009). U. S. Environmental Protection Agencyhttp://www.epa.gov/climatechange/index.html
  4. Biomass Co-Firing in Electric Utility Boilers. Primenergy (Oklahoma, Tulsa) http://www.primenergy.com/reference_BioMassFiring.htm
  5. Chunyang, Wu (2006). Fuel-NOx Formation during Low-Grade Fuel Combustion in a Swirling-Flow Burner. PhD Theses, Brigham Young University, 1-230.
  6. Drennan, S. (1982). First co-firing gas burner optimized on computer reduces particulate emissions 24%, saves $0.13/MMBtu. Journal Articles by Fluent Soft Users, 1-4.
  7. Babu, S. P. (2001). Role of Natural Gas in Promoting Bioenergy as a Component of the Sustainable Energy Scenario. Natural Gas/Renewable Energy Hybrids Workshop, NETL, Morgantown, WV, 1-12, http://www.netl.doe.gov/publications/proceedings/01/hybrids/ngbm8-01.pdf. http://www.netl.doe.gov/publications/proceedings/01/hybrids/ngbm8-01.pdf
  8. Vanoverberghe, K. P., & Vandenbulck, A. V. (2003). Confined annular swirling jet combustion. Combust. Sci. and Tech., 175, 545-578.10.1080/00102200302388
  9. Vanoverberghe, K. P. (2004). Flow, Turbulence and Combustion of Premixed Swirling Jet Flames. Doctoral theses. K. U. Leuven, dept. Mechanical Engineering, div. TME: Leuven, Belgium, 1-225.
  10. Littlejohn, D., Majeski, A. J., Tonse, S., Castaldini, C., & Cheng, R. K. (2002). Laboratory investigation of an ultralow NOx premixed combustion concept for industrial boilers. Proceedings of the Combustion Institute, 29, 1115-1121.10.1016/S1540-7489(02)80141-9
  11. Barmina, I., Desnickis, A., & Zake, M. (2008). The effect of combustion dynamics on the formation of pollutant emissions by co-firing the wood biomass with gaseous fuel. Heat Transfer Research, 39 (5), 379-389.
  12. Barmina, I., Desnickis, A., Gedrovics, M., & Zake, M. (2006). Experimental study of combustion dynamics by co-firing the renewable with fossil fuel. Sci. Proceedings of Riga Technical University, ser. Power and Electrical Engineering, Vol. 17, 174-188.
  13. Zake, M., Barmina, I., Gedrovičs, M., & Desņickis, A. (2007). Effective technology of wood and gaseous fuel co-firing for clean energy production. Latv. J. Phys. Tec. Sci. 2, 41-56.
  14. Physics of Swirling flow. (2009). http://www.personal.psu.edu/yxw145/physics%20of%20swirling%20flow.htm
  15. Molero de Blas, L. J. (1998). Pollutant formation and interaction in the combustion of heavy liquid fuels. PhD thesis, University of London.
DOI: https://doi.org/10.2478/v10047-009-0024-z | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 3 - 15
Published on: Nov 19, 2010
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2010 M. Zaķe, I. Barmina, V. Krishko, M. Gedrovics, A. Desņickis, published by Institute of Physical Energetics
This work is licensed under the Creative Commons License.

Volume 46 (2009): Issue 6 (December 2009)