Have a personal or library account? Click to login
Basic Properties of Primitive Root and Order Function Cover

Basic Properties of Primitive Root and Order Function

By: Na Ma and  Xiquan Liang  
Open Access
|Feb 2013

References

  1. [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
  2. [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
  3. [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
  4. [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
  5. [5] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
  6. [6] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
  7. [7] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
  8. [8] Zhang Dexin. Integer Theory. Science Publication, China, 1965.
  9. [9] Yoshinori Fujisawa and Yasushi Fuwa. The Euler’s function. Formalized Mathematics, 6(4):549-551, 1997.
  10. [10] Yoshinori Fujisawa, Yasushi Fuwa, and Hidetaka Shimizu. Public-key cryptography and Pepin’s test for the primality of Fermat numbers. Formalized Mathematics, 7(2):317-321, 1998.
  11. [11] G.H. Hardy and E.M. Wright. An Introduction to the Theory of Numbers. Posts and Telecom Press, China, 2007.
  12. [12] Hua Loo Keng. Introduction to Number Theory. Beijing Science Publication, China, 1957.
  13. [13] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5):841-845, 1990.
  14. [14] Artur Korniłowicz. Collective operations on number-membered sets. Formalized Mathematics, 17(2):99-115, 2009, doi: 10.2478/v10037-009-0011-0.10.2478/v10037-009-0011-0
  15. [15] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
  16. [16] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.
  17. [17] Xiquan Liang, Li Yan, and Junjie Zhao. Linear congruence relation and complete residue systems. Formalized Mathematics, 15(4):181-187, 2007, doi:10.2478/v10037-007-0022-7.10.2478/v10037-007-0022-7
  18. [18] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
  19. [19] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003.
  20. [20] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
  21. [21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
  22. [22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
  23. [23] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
DOI: https://doi.org/10.2478/v10037-012-0031-z | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 265 - 269
Published on: Feb 2, 2013
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2013 Na Ma, Xiquan Liang, published by University of Białystok
This work is licensed under the Creative Commons License.