Have a personal or library account? Click to login
The Friendship Theorem Cover
By: Karol Pąk  
Open Access
|Feb 2013

References

  1. [1] Michael Albert. Notes on the friendship theorem, http://www.math.auckland.ac.nz/-~olympiad/training/2006/friendship.pdf.
  2. [2] Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543-547, 1990.
  3. [3] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
  4. [4] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
  5. [5] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
  6. [6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
  7. [7] Czesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. FormalizedMathematics, 1(3):529-536, 1990.
  8. [8] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
  9. [9] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
  10. [10] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
  11. [11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
  12. [12] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.
  13. [13] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
  14. [14] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.
  15. [15] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
  16. [16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
  17. [17] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
  18. [18] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. FormalizedMathematics, 1(1):85-89, 1990.
DOI: https://doi.org/10.2478/v10037-012-0028-7 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 235 - 237
Published on: Feb 2, 2013
Published by: University of Białystok
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2013 Karol Pąk, published by University of Białystok
This work is licensed under the Creative Commons License.