Have a personal or library account? Click to login
Weak Completeness Theorem for Propositional Linear Time Temporal Logic Cover

Weak Completeness Theorem for Propositional Linear Time Temporal Logic

By: Mariusz Giero  
Open Access
|Feb 2013

References

  1. [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
  2. [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
  3. [3] Grzegorz Bancerek. Introduction to trees. Formalized Mathematics, 1(2):421-427, 1990.
  4. [4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
  5. [5] Grzegorz Bancerek. K¨onig’s lemma. Formalized Mathematics, 2(3):397-402, 1991.
  6. [6] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77-82, 1993.
  7. [7] Grzegorz Bancerek. Subtrees. Formalized Mathematics, 5(2):185-190, 1996.
  8. [8] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
  9. [9] Czesław Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
  10. [10] Czesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. FormalizedMathematics, 1(3):529-536, 1990.
  11. [11] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
  12. [12] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
  13. [13] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
  14. [14] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
  15. [15] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
  16. [16] Mariusz Giero. The axiomatization of propositional linear time temporal logic. FormalizedMathematics, 19(2):113-119, 2011, doi: 10.2478/v10037-011-0018-1.10.2478/v10037-011-0018-1
  17. [17] Mariusz Giero. The derivations of temporal logic formulas. Formalized Mathematics, 20(3):215-219, 2012, doi: 10.2478/v10037-012-0025-x.10.2478/v10037-012-0025-x
  18. [18] Mariusz Giero. The properties of sets of temporal logic subformulas. Formalized Mathematics, 20(3):221-226, 2012, doi: 10.2478/v10037-012-0026-9.10.2478/v10037-012-0026-9
  19. [19] Adam Grabowski. Hilbert positive propositional calculus. Formalized Mathematics, 8(1):69-72, 1999.
  20. [20] Fred Kr¨oger and Stephan Merz. Temporal Logic and State Systems. Springer-Verlag, 2008.
  21. [21] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
  22. [22] Karol Pak. Continuity of barycentric coordinates in Euclidean topological spaces. FormalizedMathematics, 19(3):139-144, 2011, doi: 10.2478/v10037-011-0022-5.10.2478/v10037-011-0022-5
  23. [23] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
  24. [24] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
  25. [25] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
  26. [26] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
  27. [27] Andrzej Trybulec. Defining by structural induction in the positive propositional language. Formalized Mathematics, 8(1):133-137, 1999.
  28. [28] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
  29. [29] Edmund Woronowicz. Many argument relations. Formalized Mathematics, 1(4):733-737, 1990.
  30. [30] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
  31. [31] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
DOI: https://doi.org/10.2478/v10037-012-0027-8 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 227 - 234
Published on: Feb 2, 2013
Published by: University of Białystok
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2013 Mariusz Giero, published by University of Białystok
This work is licensed under the Creative Commons License.