Have a personal or library account? Click to login
The Gödel Completeness Theorem for Uncountable Languages Cover

The Gödel Completeness Theorem for Uncountable Languages

Open Access
|Feb 2013

References

  1. [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
  2. [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
  3. [3] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589-593, 1990.
  4. [4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
  5. [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
  6. [6] Patrick Braselmann and Peter Koepke. Equivalences of inconsistency and Henkin models. Formalized Mathematics, 13(1):45-48, 2005.
  7. [7] Patrick Braselmann and Peter Koepke. G¨odel’s completeness theorem. Formalized Mathematics, 13(1):49-53, 2005.
  8. [8] Patrick Braselmann and Peter Koepke. A sequent calculus for first-order logic. FormalizedMathematics, 13(1):33-39, 2005.
  9. [9] Patrick Braselmann and Peter Koepke. Substitution in first-order formulas. Part II. The construction of first-order formulas. Formalized Mathematics, 13(1):27-32, 2005.
  10. [10] Czesław Bylinski. A classical first order language. Formalized Mathematics, 1(4):669-676, 1990.
  11. [11] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
  12. [12] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
  13. [13] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
  14. [14] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
  15. [15] Kurt G¨odel. Die Vollst¨andigkeit der Axiome des logischen Funktionenkalk¨uls. Monatshefte f¨ur Mathematik und Physik 37, 1930.10.1007/BF01696781
  16. [16] W. Thomas H.-D. Ebbinghaus, J. Flum. Einf¨uhrung in die Mathematische Logik. Springer-Verlag, Berlin Heidelberg, 2007.
  17. [17] Piotr Rudnicki and Andrzej Trybulec. A first order language. Formalized Mathematics, 1(2):303-311, 1990.
  18. [18] Julian J. Schlöder and Peter Koepke. Transition of consistency and satisfiability under language extensions. Formalized Mathematics, 20(3):193-197, 2012, doi: 10.2478/v10037-012-0022-0.10.2478/v10037-012-0022-0
  19. [19] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
  20. [20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
  21. [21] Edmund Woronowicz. Interpretation and satisfiability in the first order logic. FormalizedMathematics, 1(4):739-743, 1990.
  22. [22] Edmund Woronowicz. Many argument relations. Formalized Mathematics, 1(4):733-737, 1990.
  23. [23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
DOI: https://doi.org/10.2478/v10037-012-0023-z | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 199 - 203
Published on: Feb 2, 2013
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2013 Julian J. Schlöder, Peter Koepke, published by University of Białystok
This work is licensed under the Creative Commons License.