Have a personal or library account? Click to login
Routh’s, Menelaus’ and Generalized Ceva’s Theorems Cover

Routh’s, Menelaus’ and Generalized Ceva’s Theorems

Open Access
|Feb 2013

References

  1. [1] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
  2. [2] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
  3. [3] Akihiro Kubo. Lines in n-dimensional Euclidean spaces. Formalized Mathematics, 11(4):371-376, 2003.
  4. [4] Akihiro Kubo and Yatsuka Nakamura. Angle and triangle in Euclidian topological space. Formalized Mathematics, 11(3):281-287, 2003.
  5. [5] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
  6. [6] Marco Riccardi. Heron’s formula and Ptolemy’s theorem. Formalized Mathematics, 16(2):97-101, 2008, doi:10.2478/v10037-008-0014-2.10.2478/v10037-008-0014-2
  7. [7] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
  8. [8] Freek Wiedijk. Formalizing 100 theorems. http://www.cs.ru.nl/~freek/100/.
  9. [9] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.
DOI: https://doi.org/10.2478/v10037-012-0018-9 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 157 - 159
Published on: Feb 2, 2013
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2013 Boris A. Shminke, published by University of Białystok
This work is licensed under the Creative Commons License.