Have a personal or library account? Click to login
Definition of First Order Language with Arbitrary Alphabet. Syntax of Terms, Atomic Formulas and their Subterms Cover

Definition of First Order Language with Arbitrary Alphabet. Syntax of Terms, Atomic Formulas and their Subterms

By: Marco Caminati  
Open Access
|Apr 2012

References

  1. Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
  2. Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
  3. Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
  4. Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
  5. Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
  6. Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
  7. Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
  8. Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
  9. Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
  10. Marco B. Caminati. Preliminaries to classical first order model theory. Formalized Mathematics, 19(3):155-167, 2011, doi: 10.2478/v10037-011-0025-2.10.2478/v10037-011-0025-2
  11. Marco B. Caminati. First order languages: Further syntax and semantics. Formalized Mathematics, 19(3):179-192, 2011, doi: 10.2478/v10037-011-0027-0.10.2478/v10037-011-0027-0
  12. Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
  13. Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711-717, 1991.
  14. Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.
  15. Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
  16. W. Pohlers and T. Glaß. An introduction to mathematical logic. Vorlesungsskriptum, WS, 93, 1992.
  17. Marta Pruszyńska and Marek Dudzicz. On the isomorphism between finite chains. Formalized Mathematics, 9(2):429-430, 2001.
  18. Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
  19. Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
  20. Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
  21. Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
  22. Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
DOI: https://doi.org/10.2478/v10037-011-0026-1 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 169 - 178
Published on: Apr 26, 2012
Published by: University of Białystok
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2012 Marco Caminati, published by University of Białystok
This work is licensed under the Creative Commons License.

Volume 19 (2011): Issue 3 (September 2011)