Have a personal or library account? Click to login
The Correspondence Between n-dimensional Euclidean Space and the Product of n Real Lines Cover

The Correspondence Between n-dimensional Euclidean Space and the Product of n Real Lines

Open Access
|Jan 2011

References

  1. [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
  2. [2] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
  3. [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
  4. [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
  5. [5] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481-485, 1991.
  6. [6] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
  7. [7] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
  8. [8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
  9. [9] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
  10. [10] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
  11. [11] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
  12. [12] Jarosław Gryko. Injective spaces. Formalized Mathematics, 7(1):57-62, 1998.
  13. [13] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
  14. [14] Artur Korniłowicz. Arithmetic operations on functions from sets into functional sets. Formalized Mathematics, 17(1):43-60, 2009, doi:10.2478/v10037-009-0005-y.10.2478/v10037-009-0005-y
  15. [15] Beata Madras. Product of family of universal algebras. Formalized Mathematics, 4(1):103-108, 1993.
  16. [16] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
  17. [17] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
  18. [18] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
  19. [19] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
  20. [20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
  21. [21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
  22. [22] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
DOI: https://doi.org/10.2478/v10037-010-0011-0 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 81 - 85
Published on: Jan 5, 2011
Published by: University of Białystok
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2011 Artur Korniłowicz, published by University of Białystok
This work is licensed under the Creative Commons License.

Volume 18 (2010): Issue 1 (March 2010)