Have a personal or library account? Click to login
Basic Properties of Metrizable Topological Spaces Cover

Basic Properties of Metrizable Topological Spaces

By: Karol Pąk  
Open Access
|Jul 2010

References

  1. [1] Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543-547, 1990.
  2. [2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
  3. [3] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
  4. [4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
  5. [5] Józef Białas and Yatsuka Nakamura. The theorem of Weierstrass. Formalized Mathematics, 5(3):353-359, 1996.
  6. [6] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481-485, 1991.
  7. [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
  8. [8] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.
  9. [9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
  10. [10] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
  11. [11] Ryszard Engelking. General Topology, volume 60 of Monografie Matematyczne. PWN-Polish Scientific Publishers, Warsaw, 1977.
  12. [12] Ryszard Engelking. Teoria wymiaru. PWN, 1981.
  13. [13] Adam Grabowski. Properties of the product of compact topological spaces. Formalized Mathematics, 8(1):55-59, 1999.
  14. [14] Adam Grabowski. On the Borel families of subsets of topological spaces. Formalized Mathematics, 13(4):453-461, 2005.
  15. [15] Adam Grabowski. On the boundary and derivative of a set. Formalized Mathematics, 13(1):139-146, 2005.
  16. [16] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
  17. [17] Zbigniew Karno. Maximal discrete subspaces of almost discrete topological spaces. Formalized Mathematics, 4(1):125-135, 1993.
  18. [18] Robert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285-294, 1998.
  19. [19] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
  20. [20] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics, 5(2):233-236, 1996.
  21. [21] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
  22. [22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
  23. [23] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
DOI: https://doi.org/10.2478/v10037-009-0024-8 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 201 - 205
Published on: Jul 8, 2010
Published by: University of Białystok
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2010 Karol Pąk, published by University of Białystok
This work is licensed under the Creative Commons License.

Volume 17 (2009): Issue 3 (September 2009)