Have a personal or library account? Click to login
Solutions of Linear Equations Cover
By: Karol Pąk  
Open Access
|Mar 2009

References

  1. [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
  2. [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
  3. [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
  4. [4] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
  5. [5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
  6. [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
  7. [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
  8. [8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
  9. [9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
  10. [10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
  11. [11] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
  12. [12] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711-717, 1991.
  13. [13] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
  14. [14] Robert Milewski. Associated matrix of linear map. Formalized Mathematics, 5(3):339-345, 1996.
  15. [15] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
  16. [16] Karol Pαk. Basic properties of determinants of square matrices over a field. Formalized Mathematics, 15(1):17-25, 2007.10.2478/v10037-007-0003-x
  17. [17] Karol Pαk. Basic properties of the rank of matrices over a field. Formalized Mathematics, 15(4):199-211, 2007.10.2478/v10037-007-0024-5
  18. [18] Karol Pαk and Andrzej Trybulec. Laplace expansion. Formalized Mathematics, 15(3):143-150, 2007.10.2478/v10037-007-0016-5
  19. [19] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
  20. [20] Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics, 1(5):883-885, 1990.
  21. [21] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
  22. [22] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865-870, 1990.
  23. [23] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
  24. [24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
  25. [25] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
  26. [26] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205-211, 1992.
  27. [27] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1-8, 1993.
  28. [28] Mariusz Żynel. The Steinitz theorem and the dimension of a vector space. Formalized Mathematics, 5(3):423-428, 1996.
DOI: https://doi.org/10.2478/v10037-008-0012-4 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 81 - 90
Published on: Mar 20, 2009
Published by: University of Białystok
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2009 Karol Pąk, published by University of Białystok
This work is licensed under the Creative Commons License.

Volume 16 (2008): Issue 1 (March 2008)