Have a personal or library account? Click to login
The First Mean Value Theorem for Integrals Cover

The First Mean Value Theorem for Integrals

Open Access
|Mar 2009

References

  1. [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
  2. [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
  3. [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
  4. [4] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.
  5. [5] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.
  6. [6] Józef Białas. The σ-additive measure theory. Formalized Mathematics, 2(2):263-270, 1991.
  7. [7] Józef Białas. Some properties of the intervals. Formalized Mathematics, 5(1):21-26, 1996.
  8. [8] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
  9. [9] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
  10. [10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
  11. [11] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
  12. [12] Noboru Endou and Yasunari Shidama. Integral of measurable function. Formalized Mathematics, 14(2):53-70, 2006.10.2478/v10037-006-0008-x
  13. [13] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Basic properties of extended real numbers. Formalized Mathematics, 9(3):491-494, 2001.
  14. [14] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. Formalized Mathematics, 9(3):495-500, 2001.
  15. [15] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. The measurability of extended real valued functions. Formalized Mathematics, 9(3):525-529, 2001.
  16. [16] P. R. Halmos. Measure Theory. Springer-Verlag, 1987.
  17. [17] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
  18. [18] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
  19. [19] Andrzej Nedzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
  20. [20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
  21. [21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
  22. [22] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
DOI: https://doi.org/10.2478/v10037-008-0008-0 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 51 - 55
Published on: Mar 20, 2009
Published by: University of Białystok
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2009 Keiko Narita, Noboru Endou, Yasunari Shidama, published by University of Białystok
This work is licensed under the Creative Commons License.

Volume 16 (2008): Issue 1 (March 2008)