Have a personal or library account? Click to login
Inferior Limit, Superior Limit and Convergence of Sequences of Extended Real Numbers Cover

Inferior Limit, Superior Limit and Convergence of Sequences of Extended Real Numbers

Open Access
|Jun 2008

References

  1. [4] Józef Białas. The σ-additive measure theory. Formalized Mathematics, 2(2):263-270, 1991.
  2. [5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
  3. [6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
  4. [7] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
  5. [8] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in ε2. Formalized Mathematics, 6(3):427-440, 1997.
  6. [9] Noboru Endou and Yasunari Shidama. Integral of measurable function. Formalized Mathematics, 14(2):53-70, 2006.10.2478/v10037-006-0008-x
  7. [10] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. Formalized Mathematics, 9(3):495-500, 2001.
  8. [11] Adam Grabowski. On the Kuratowski limit operators. Formalized Mathematics, 11(4):399-409, 2003.
  9. [12] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
  10. [13] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
  11. [14] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
  12. [15] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
  13. [16] Andrzej Nedzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
  14. [17] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
  15. [18] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
  16. [19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
  17. [20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
  18. [21] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
  19. [22] Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Inferior limit and superior limit of sequences of real numbers. Formalized Mathematics, 13(3):375-381, 2005.
  20. [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
  21. [2] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.
  22. [3] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.
DOI: https://doi.org/10.2478/v10037-007-0026-3 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 231 - 235
Published on: Jun 9, 2008
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2008 Hiroshi Yamazaki, Noboru Endou, Yasunari Shidama, Hiroyuki Okazaki, published by University of Białystok
This work is licensed under the Creative Commons License.

Volume 15 (2007): Issue 4 (December 2007)