Have a personal or library account? Click to login
The Relevance of Measure and Probability, and Definition of Completeness of Probability Cover

The Relevance of Measure and Probability, and Definition of Completeness of Probability

Open Access
|Jun 2008

References

  1. [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
  2. [2] Grzegorz Bancerek. Köonig's theorem. Formalized Mathematics, 1(3):589-593, 1990.
  3. [3] Józef Białas. Completeness of the σ-additive measure. Measure theory. Formalized Mathematics, 2(5):689-693, 1991.
  4. [4] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.
  5. [5] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.
  6. [6] Józef Białas. The σ-additive measure theory. Formalized Mathematics, 2(2):263-270, 1991.
  7. [7] Józef Białas. Some properties of the intervals. Formalized Mathematics, 5(1):21-26, 1996.
  8. [8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
  9. [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
  10. [10] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
  11. [11] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in ε2. Formalized Mathematics, 6(3):427-440, 1997.
  12. [12] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
  13. [13] Andrzej Nędzusiak. Probability. Formalized Mathematics, 1(4):745-749, 1990.
  14. [14] Andrzej Nędzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
  15. [15] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
  16. [16] Konrad Raczkowski and Andrzej Nędzusiak. Series. Formalized Mathematics, 2(4):449-452, 1991.
  17. [17] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
  18. [18] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
  19. [19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
  20. [20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
  21. [21] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
  22. [22] Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Inferior limit and superior limit of sequences of real numbers. Formalized Mathematics, 13(3):375-381, 2005.
  23. [23] Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Set sequences and monotone class. Formalized Mathematics, 13(4):435-441, 2005.
DOI: https://doi.org/10.2478/v10037-006-0026-8 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 225 - 229
Published on: Jun 13, 2008
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2008 Bo Zhang, Hiroshi Yamazaki, Yatsuka Nakamura, published by University of Białystok
This work is licensed under the Creative Commons License.

Volume 14 (2006): Issue 4 (December 2006)