Have a personal or library account? Click to login
The Definition of Finite Sequences and Matrices of Probability, and Addition of Matrices of Real Elements Cover

The Definition of Finite Sequences and Matrices of Probability, and Addition of Matrices of Real Elements

By: Bo Zhang and  Yatsuka Nakamura  
Open Access
|Jun 2008

References

  1. [1] Kanchun and Yatsuka Nakamura. The inner product of finite sequences and of points of n-dimensional topological space. Formalized Mathematics, 11(2):179-183, 2003.
  2. [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
  3. [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
  4. [4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
  5. [5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
  6. [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
  7. [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
  8. [8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
  9. [9] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
  10. [10] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
  11. [11] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
  12. [12] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
  13. [13] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized Mathematics, 3(1):107-115, 1992.
  14. [14] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
  15. [15] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
  16. [16] Robert Milewski. Associated matrix of linear map. Formalized Mathematics, 5(3):339-345, 1996.
  17. [17] Yatsuka Nakamura, Nobuyuki Tamura, and Wenpai Chang. A theory of matrices of real elements. Formalized Mathematics, 14(1):21-28, 2006.10.2478/v10037-006-0004-1
  18. [18] Library Committee of the Association of Mizar Users. Binary operations on numbers. To appear in Formalized Mathematics.
  19. [19] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
  20. [20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
  21. [21] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
  22. [22] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
  23. [23] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
  24. [24] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
  25. [25] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205-211, 1992.
DOI: https://doi.org/10.2478/v10037-006-0012-1 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 101 - 108
Published on: Jun 9, 2008
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2008 Bo Zhang, Yatsuka Nakamura, published by University of Białystok
This work is licensed under the Creative Commons License.

Volume 14 (2006): Issue 3 (September 2006)